

When to Use Gender-Biased Semen: Economics

14:27

& 19-20, 2009 Cabrera, DCRC Nov. 13-14 Victor E.

Introduction

- Gender-biased = sexed-semen = sex-sorted semen
- Sexed semen = ↑ Female Calf Ratio
- Sexed semen economically attractive
- Sexed semen = ↓ Fertility
- Consequently, sexed semen has an increased proportion of females, but with a lower CR

Introduction

- Decision should be based on careful economic analysis
- A number of other factors impact the economics
- Sexed semen could be used with any open cow
- However, it seems to be more appropriated for virgin heifers
- Wisconsin dairy producers are using it with virgin heifers in first and second services

Objectives

- Propose a methodological framework to evaluate systematically the economics of sexed semen
- Document the latest biological and economic parameters to perform the evaluation
- Assess the economic value of sexed semen on heifers
- Transform the analysis framework into a userfriendly decision support system

- Partial budgeting of survival curves using net present values (NPV) to estimate the economic value (EV) of sexed semen programs
- Partial budgeting = additional revenues, additional costs, revenues foregone, reduced costs
- NPV = Fair comparison between conventional sexed semen programs
- EV = Difference of sexed and conventional semen

Nov. Cabrera, DCRC Regional Meetings, Victor E.

- Assumption 1: The reproductive program starts on 14-mo old heifers (420 d age)
- Assumption 2: Producers will attempt up-to 5 consecutive reproductive services on virgin heifers (Kuhn et al., 2006)
- Treatments: Sexed semen used in 1, 2, 3, 4, and 5 consecutive services.
- Control: Conventional semen

• Calculation of the EV:

$$EV = NPV(X) - NPV(NX)$$

• Calculation of the NPV:

$$NPV = \sum_{s=1}^{3} (\delta_s)(NPV_s) + (\delta_5)(HC - HR)(1 - PP_5)$$

HC = heifer cull value; HR = value of a 20-mo pregnant heifer; PP₅ = proportion of pregnant heifers after the fifth service, \mathcal{E} discount

Calculation of the NPV after each service:

$$NPV_{s} = CR_{s}^{'}*(CV-DC)-(1-PP_{s})*MC-AIC$$

CR' = conception rate achieved in service s

CV = Calf value dependent on heifer sex ratio

DC = Estimated dystocia cost

MC = Non-pregnant heifer maintenance

AIC = Cost of semen dose

2009

Nov.

Cabrera, DCRC Regional Meetings,

Methodological Framework

Survival curves calculated by conditional probabilities:

$$PP_{1} = CR_{1}^{'} = CR_{1}$$

$$PP_{s} = PP_{s-1} + (1 - PP_{s-1}) * CR_{s} \text{ for s = 2 to 5}$$

$$CR_{s}^{'} = PP_{s} - PP_{s-1} \text{ for s = 2 to 5}$$

Concept of "Overall EV":

Overall EV =
$$(\sum_{t=1}^{5} \sum_{CR=1}^{3} EV_{t,CR})/(5trt*3CR)$$

Reproductive Parameters

13-14 Nov. DCRC Regional Meetings, Cabrera, Victor E.

- Conventional CR: 34% (low), 56% (avg.), 83% (high) (DeJarnette et al., 2009)
- Sexed semen CR: 80% of the conventional semen (DeJarnette et al., 2009)
- Decrease in CR: 2.5% points additional service (Kuhn et al., 2006)
- Conv. heifer calf rate: 46.7% (Silva del Rio et al., 2007)
- Sexed semen heifer calf rate: 89% (DeJarnette et al., 2009)

Economic Parameters

13-14 Nov. Regional Meetings, **DCRC** I Cabrera, Victor E.

- Premium paid for sex-sorted semen dose: \$30 (Olynk and Wolf, 2007)
- Female/Male calf value: \$562 / \$48 (Wisconsin USDA Market Report, 2008)
- Dystocia cost: \$28.53
 (Dematawewa and Berger, 1997)
- Male/Female dystocia cost: 1.57, \$ 34.91 / \$ 22.15 (Martinez et al., 1983)

Other Economic Parameters

, 2009		Conventional and Sexed Semen	Source
& 19-20,	Maintenance (\$/d)	2.4	Zwald et al., 2007
tings, Nov. 13-14	Weight of a 20-mo non- pregnant heifer (kg)	505	NRC, 2001
DCRC Regional Meetings, Nov.	Salvage value of 20-mo non-pregnant heifer (\$/kg)	1.79	Wisc. USDA (2008)
Victor E. Cabrera, DC	Value of 20-mo pregnant heifer (\$)	1,200	Wisc. USDA (2008)
12 Vic	Interest rate (%/yr)	12	

19-20, 2009

13-14

Cabrera, DCRC Regional Meetings, Nov.

Analyses

- Calculation of Overall EV for baseline conditions
- Break-even
- Sensitivity
- Scenarios
- Optimal treatment

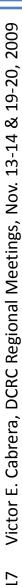
Victor E.

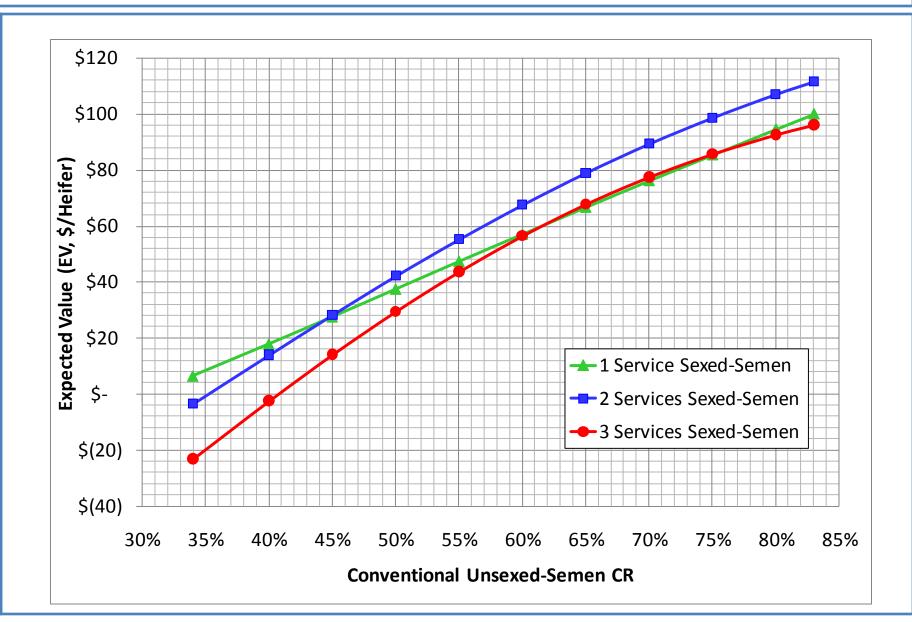
19-20, 2009

 Sexed semen justified for the first service for an (Overall EV = \$30.10/heifer) 	ıy Cl	₹
	_	

13-14 & :	(Overall EV = \$30.10/heifer)					
Regional Meetings, Nov.	Reproductive Program (Number of	Low Average Hig CR (34 %) CR (56 %) CR (8		High CR (83 %)	Conventional CR for positive EV	
gional	Sexed Semen		EV		%	
C Reg	Services)					
, DCRC	1	6.5	49.3	100.0	31	
Cabrera,	2	-3.4	57.8	111.6	36	
E. Cak	3	-23.1	46.4	96.1	41	
Victor I	4	-48.9	24.7	71.7	48	
Ш	5	-78.5	-2.7	43.9	58	
14						

19-20, 2009	Scenario	Over- all EV	Break- Even CR*	Number of Consecutive Services Positive EV		
14 &				Low	Average	High
13-		(\$/hfr)	(%)	CR (34 %)	CR (56 %)	CR (83 %)
Nov.	Baseline	30.10	31	1	4	5
ngs,	X Semen CR at 85 %	46.40	31	2	5	5
eeti	X Semen CR at 75 %	12.50	36	0	4	5
a M	X Semen 95 % heifer ratio	52.40	27	2	5	5
gion	X Semen 78 % heifer ratio	-10.90	41	0	3	4
C Re	Male calf value at \$0	45.20	28	2	5	5
DCRC Regional Meetings,	Female calf value at \$700	69.30	25	3	5	5
	Female calf value at \$280	-50.10	59	0	0	2
Cabrera,	Premium X semen at \$40	1.1	37	0	3	4
	Premium X semen at \$20	59.1	26	3	5	5
Victor E.	Dystocia cost at \$42.8	32.40	30	1	5	5
>	Dystocia cost at \$14.27	27.70	31	1	4	5
15	* Required CR for posit	tive EV	with 1)	K semen s	ervice	


2009	Scenario		Number of Services with Positive and Maximum Expected Value (EV)			
19-20,		Low CR (34 %)	Average CR (56 %)	High CR (83 %)		
8	Baseline	1	2	2		
-14	1) X Semen CR at 85 %	1	2	2		
13-	2) X Semen CR at 75 %	None	2	2		
Nov.	3) X Semen to have 95 % heifer Calves	1	2	2		
	4) X Semen to have 78 % heifer Calves	None	1	1		
gs,	5) Male calf value at \$0	1	2	2		
Cabrera, DCRC Regional Meetings,	6) Female calf value at \$700	1	2	2		
	7) Female calf value at \$280	None	None	1		
	8) Dystocia cost at \$42.8	1	2	2		
	9) Dystocia cost at \$14.27	1	2	2		
	10) X semen premium \$40	None	1	2		
	11) X semen premium \$20	1	2	2		
	1) and 3)	2	2	2		
	3) and 6)	2	2	2		
apr	1) and 6)	2	2	2		
اند	1) and 3) and 6)	2	3	2		
	1) and 3) and 6) and 11)	3	3	2		
Victor	2) and 4)	None	1			
>	4) and 7)	None	None	1		
16	2) and 4) and 7)	None	None	None		



19-20, 2009 13-14 Victor E. Cabrera, DCRC Regional Meetings, Nov.

- Maintenance cost (\$2.4/d): -\$1/+\$0.1
- Salvage value (\$1.79/kg): -\$1/+\$0.1
- Pregnant heifer value (\$1,200): -2.84/+\$100
- Dystocia cost (\$28.53): +\$1.44/+\$10
- Premium of sexed semen (\$30): -\$14.50/+\$5
- Discount rate (12%): -\$0.1/+10%

Conclusions

- Gender-biased or sexed-semen has a higher economic value than conventional semen
- The single most important factor is the current or expected conventional semen heifer CR:
 - If the CR is between 31 and 44%, the optimal is to use sexed-semen for only first service
 - If the CR is above 44%, the optimal would be to use sexed-semen for the 2 first services

Conclusions

13-14 Cabrera, DCRC Regional Meetings, Nov. Victor E.

- Other important parameters in the decision: CR of sexed-sexed semen (+); expected proportion of female calves (+); female calf value (+); premium of sexed-semen (-)
- Other parameters will only have limited impact on the decisions

Conclusions

- Some other considerations:
 - Greater incidence of stillbirths
 - Longer gestation period
 - Faster genetic improvement possibilities
 - Implications for farm herd expansion
 - Decreased bio-security risks
 - Implications for US herd expansion

Decision Support Challenge

DCRC Regional Meetings, Nov. Victor E.

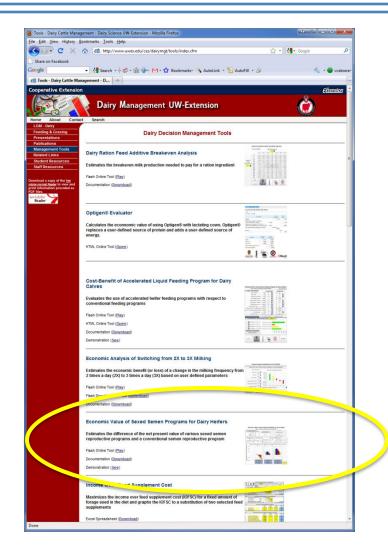
- Results not applicable for all farm and market conditions
- Every farm is different
- Market conditions are permanently changing
- Challenge: Provide the same analysis as a decision support system for practitioners or final users
- Spreadsheets are good and popular, but sometimes could deter users for a series of reasons

Decision Support Challenge

Regional Meetings, DCRC Cabrera,

- Decision support system should be:
 - Visually attractive
 - Interactive
 - Robust
 - Preferably online
 - Self-contained
 - Scenario-driven
- Decision support system should have:
 - Secured calculations. Users characterize their situation by defining parameters
 - Clear instructions
 - Technical support available

Decision Support Challenge



Thanks

