

United States Department of Agriculture National Institute of Food and Agriculture

FACTORS AFFECTING PROFITABILITY ON WISCONSIN DAIRY FARMS.

M Dutreuil¹, V.E Cabrera¹, R Gildersleeve², C.A Hardie^{*1} UW Madison, Madison, WI, USA¹, UW Extension, Lancaster WI, USA²

INTRODUCTION

Volatility in milk prices

Volatility in feed costs

Increased concern about the impact of feeding strategies on profitability

OBJECTIVES

Assess the impact of feeding strategies associated with organic (ORG), grazier (GRA) or conventional (CON) practices on farm profitability

MATERIALS AND METHODS

- A survey questionnaire with 10 parts:
 - ◆ Part A: Farm business structure
 - ◆ Part B: People on the farm
 - ◆ Part C: Dairy herd
 - Part D: Feeding
 - ◆ Part E: Pasture
 - Part F: Crops
 - ◆ Part G: Manure and nutrient management
 - ◆ (Part H: Farmer-farmer interactions) Removed
 - ◆ Part I: Economic
 - ◆ Part J: Satisfaction

MATERIALS AND METHODS

• Farm selection:

Farms were selected from Wisconsin's official lists of certified milk producers and organic producers as well as a list of graziers compiled from extension agents from the University of Wisconsin.

MATERIALS AND METHODS

 Profitability was defined as the Income Over Feed Cost (IOFC)

IOFC = income from milk sales – feed costs

 Data was analyzed using cluster analysis by complete linkage.

RESULTS

• 131 farms were surveyed between October 2010 and January 2012.

 Farms were divided into 3 feeding systems: Organic, Conventional and Graziers.

- Results from 20 farms are presented here.
 - 4 ORG
 - 4 GRA
 - 12 CON.

C: Conventional

O: Organic

G: Grazier

complete linkage

	Cluster 1	Cluster 2	Cluster 3
# Organic farms	1	0	3
# Grazing farms	2	1	1
# Conventional farms	6	4	2

	Cluster 1	Cluster 2	Cluster 3
Total acres	287		
Age of the respondent	49		
Number of cows	72		
Milk production (lbs/cow per year)	15,517		
Fat content (%)	3.78		
Protein content (%)	3.00		
SCC (x1,000 cells/ml)	287		
Milk price (\$/cwt)	16.77		
% milk not sold	1.65		
Total DMI in winter (lbs/cow per day)	52.8		
% grass/legume silage in winter	19.3		
% hay in winter	37.8		
% corn silage in winter	12.0		
% concentrates in winter	30.0		
% vitamins and minerals in winter	0.9		
IOFC in winter (\$/cow per day)	5.97		

	Cluster 1	Cluster 2	Cluster 3
Total acres	287	236	
Age of the respondent	49	44	
Number of cows	72	71	
Milk production (lbs/cow per year)	15,517	23,630	
Fat content (%)	3.78	3.56	
Protein content (%)	3.00	3.03	
SCC (x1,000 cells/ml)	287	204	
Milk price (\$/cwt)	16.77	15.86	
% milk not sold	1.65	0.49	
Total DMI in winter (lbs/cow per day)	52.8	44.4	
% grass/legume silage in winter	19.3	37.8	
% hay in winter	37.8	0.9	
% corn silage in winter	12.0	18.2	
% concentrates in winter	30.0	42.4	
% vitamins and minerals in winter	0.9	0.7	
IOFC in winter (\$/cow per day)	5.97	8.09	

	Chuster 1	Cluster 0	Cluster 2
	Cluster 1	Cluster 2	Cluster 3
Total acres	287	236	134
Age of the respondent	49	44	49
Number of cows	72	71	48
Milk production (lbs/cow per year)	15,517	23,630	9,104
Fat content (%)	3.78	3.56	4.36
Protein content (%)	3.00	3.03	3.25
SCC (x1,000 cells/ml)	287	204	317
Milk price (\$/cwt)	16.77	15.86	21.88
% milk not sold	1.65	0.49	3.08
Total DMI in winter (lbs/cow per day)	52.8	44.4	39.6
% grass/legume silage in winter	19.3	37.8	15.0
% hay in winter	37.8	0.9	61.8
% corn silage in winter	12.0	18.2	4.6
% concentrates in winter	30.0	42.4	16.2
% vitamins and minerals in winter	0.9	0.7	2.4
IOFC in winter (\$/cow per day)	5.97	8.09	5.22

o Cluster 1:

- ◆ Largest land base but intermediate milk production, composition and price.
- ◆ Highest DMI but intermediate percentages of each diet ingredients compared with farms in clusters 2 and 3.

"intermediate farms" with an IOFC of \$5.97/cow/day.

- o Cluster 2:
 - ◆ Similar in size to cluster 1 (# cows and acres).
 - Highest milk production and percentage of concentrate in the diet but lowest milk composition and price.

"productive efficient farms" with an IOFC of \$8.09/cow per day

- o Cluster 3:
 - Smallest land base and smallest number of cows.
 - Highest milk composition and price but lowest milk production and estimated dry matter intake.

"low input farms" with an IOFC of \$5.22/cow/day.

CONCLUSION

- The 3 clusters contained farms from different systems suggesting that the farm system is not a good indicator of farm profitability.
- The scope of inference from this analysis should be restricted to the sample population from which the data was collected. Results presented here reflect only a small portion of all the data collected with the 131 surveys.
- Detailed impact of feeding management strategies on production variables, environmental outcomes and economics performances will emerge from the analysis of the entire survey results.