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Abstract

This article examines the role of neighboring farmers’ characteristics in the analysis of

dynamic productivity growth and its components, namely dynamic technical inefficiency

change, dynamic technical change, and dynamic scale inefficiency change. The empirical

application focuses on spatially explicit farm-level data for the Wisconsin dairy sector

covering the period 2009 to 2017. Employing a production framework that accounts for

the dynamics of capital adjustment, dynamic productivity growth and its components are

calculated as a fist step and subsequently, non-spatial and spatial panel data models are

estimated and compared to examine the presence of spatial interdependencies in dynamic

productivity growth and its decompositions. Results show that neighboring farmers’ char-

acteristics and, more specifically, their financial and production characteristics, influence

farm dynamic productivity growth and its components. Judgments are then made, based

on theory and institutional context, about the potential channels through which these

effects operate. Results also show that in addition to neighboring farmers’ characteris-

tics, own-farm characteristics and climatic conditions play an important role in explaining

farm dynamic productivity growth and its components.

Keywords: data envelopment analysis, dynamic Luenberger productivity growth, spatial

spillovers, spatial panel data models, dairy farms
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1 Introduction

Productivity growth, is an important indicator of a firm’s economic performance and com-

petitiveness (Emvalomatis, 2012). In the context of agricultural production, productivity

growth can be viewed as an indicator of a farm’s ability to persist in an environment

where regulatory (e.g banning of specific inputs), market (e.g. increased cost of produc-

tion), and environmental pressures (e.g. extreme weather events) may reduce its economic

performance and even lead to farm exit.

Measuring productivity growth and understanding the factors that drive it, can guide

future policy interventions and extension programs that seek to enhance farm performance

(Lien et al., 2017). To this end, a large number of studies have been conducted to

measure and decompose farm-level productivity growth rates, mostly in a static setting

(e.g. Brümmer et al., 2002; Lambarraa et al., 2007, and many others). Some studies

have gone a step further and examined the factors that affect changes in productivity

growth, such as farm policies, climatic conditions, risk, and farm characteristics (e.g. Lien

et al., 2017; Mary, 2013; Rizov et al., 2013; Skevas and Lansink, 2014, and many others).

However, the role of neighboring farmers’ characteristics on dynamic productivity growth

and its components remains largely unexplored and, therefore, is the focus of this study.

Farm productivity (and its components) differs between farms due to their different

characteristics. For instance, large farms often exhibit higher productivity growth than

small farms. This is because large farms adopt innovations earlier than small farms (Weiss,

1999) and, given their larger collateral, have better access to credit (Roberts and Key,

2008), leading to improved ability to invest in capital assets and land improvements. We

argue that, apart from own farm characteristics, neighboring farmers’ characteristics and

decisions also affect a farmer’s productivity growth and its components. Social networks

and knowledge and technology transfers may be among the channels through which these

spillover effects operate 1. For example, farmers may exchange information with their

1A growing body of literature provides evidence that neighborhood networks and social learning play

an important role in farmers’ production decisions and resource use (Chatzimichael et al., 2014; Conley
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neighbors’ about the effectiveness of specific farm management practices or technologies,

and adjust their practices accordingly. This, in turn, may lead to similarities in perfor-

mance across neighboring farms. Another channel through which neighboring farmers’

characteristics may affect a farmer’s performance is competitive interaction on the land

or labor market 2. For instance, often farmers compete for a fixed supply of farm land

(Storm et al., 2014; Weiss, 1999). In such cases, larger farms in terms of economic size

may be more able to expand their businesses and achieve a more efficient scale of oper-

ation. This, in turn, may prevent neighboring farms from achieving the size that would

allow them to benefit from economies of scale, leading to decreased productivity growth.

On the other hand large farms in terms of economic size can have a positive influence on

neighboring farmers’ productivity growth. This is because economically successful farms

may be more likely to adopt new technologies and since often neighboring farmers follow

the practices of their successful neighbors (Chatzimichael et al., 2014), they may adopt

similar technologies and become more competitive. Therefore, since neighboring farmers’

characteristics can affect a farmer’s performance, the value of investigating the importance

of such effects on farmers’ dynamic productivity growth and its components is obvious.

Currently, only a few studies have examined the role of spatial interdependencies on

farmers’ performance (Areal et al., 2012; Pede et al., 2018). All these studies have only

focused on assessing the effect of spatial interactions on farmers’ technical efficiency (under

a static production environment) and found that interdependence between neighboring

farms is an important determinant of their performance. Against this background, the

goal of our article is to examine whether neighboring farmers’ characteristics influence a

farmer’s dynamic productivity growth and its components. By doing so, we are the first

to provide empirical evidence on the importance, magnitude, and likely channels through

and Udry, 2010; Foster and Rosenzweig, 1995; Wollni and Andersson, 2014). For example, Conley and

Udry (2010) found that farmers in Ghana adjusted their inputs to align with those of their successful

neighboring peers. Such adjustments can lead to spatially-structured farm productivity growth.
2Storm et al, in study that examined the effect of neighboring farmers’ characteristics on farm survival,

used the idea of competitive interaction among farmers on the land market to explain their finding that

farms with larger neighbors in terms of direct payments have a lower survival probability.
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which spatial spillover effects influence nearby farms’ dynamic productivity growth and its

decompositions. Such empirical evidence may facilitate the design of farm policies aimed

at enhancing farm performance. For example, if spatial spillover effects arise as a result

of information sharing and imitation of the production decisions of nearby farms, then

policy makers can take advantage of these information spillover effects and propagate more

efficiently innovative productivity-enhancing technologies and management practices.

The rest of the paper proceeds as follows. The modeling approach is laid out in the

next section. Section 3 presents the data used in this article. Section 4 reports and

discusses the results, and Section 5 concludes.

2 Research Methodology

The research methodology used in this study consists of two steps. First, using Data En-

velopment Analysis (DEA) models that account for the dynamics of capital adjustment, a

farm-specific dynamic Luenberger productivity growth indicator is computed and decom-

posed into dynamic technical inefficiency change, dynamic technical change, and dynamic

scale inefficiency change. Non-spatial and spatial panel data models using the dynamic

Luenberger indicator and its components as dependent variables are then estimated and

compared to examine the role of spatial spillover effects (and some control variables) in

farms’ dynamic productivity growth and its decompositions.

2.1 Dynamic Luenberger indicator of productivity growth

We use a dynamic directional distance function to define the Luenberger indicator of

productivity growth. The dynamic production framework employed in this analysis is

based on the theory of gradual adjustment of quasi-fixed production factors in the presence

of adjustment costs (Eisner and Strotz, 1963; Epstein, 1981). Let yt ∈ RM
+ represent a

vector of outputs, xt ∈ RP
+ denote a vector of variable inputs, kt ∈ RQ

+ represent a

vector of quasi-fixed inputs, It ∈ RC
+ be a vector of gross investments, Ht ∈ RF

+ be

a vector of fixed inputs for which no investments are allowed, and t be a time trend.
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The production input requirement set is represented as V (yt : Kt,Ht) =
{

(xt, It) :

can produce yt, given Kt, Ht

}
. V (yt : Kt,Ht) is assumed to have the properties defined

by Silva, Lansink, et al. (2013) 3. V (yt : Kt,Ht) can be represented by the following

input-oriented dynamic directional distance function (DDF):

−→
D i
t(yt,xt, It,Kt,Ht; gx,gI) =

max
{
β ∈ R : (xt − βgx, It + βgI) ∈ T

}
gx ∈ RP

+,gI ∈ RC
+, (gx,gI) 6= (0P , 0C)

(1)

if (xt − βgx, It + βgI) ∈ V (yt : Kt,Ht) for some β, and
−→
D i
t(yt,xt, It,Kt,Ht; gx,gI) =

−∞. gx and gI are the vectors of directions in which variable inputs and investments can

be translated. The dynamic DDF in (1) seeks the maximum translation of the variable

input and gross investment vectors in the direction defined by the respective directional

vector, which keeps the translated input combination in the interior of the production

input requirement set. Since βgI is added to It and βgx is subtracted from xt, the

dynamic DDF seeks to simultaneously expand gross investments and contract variable

inputs. The dynamic inefficiency of decision making units (DMUs) is measured by β.

As demonstrated by Silva, Lansink, et al. (2013),
−→
D i
t(yt,xt, It,Kt,Ht; gx,gI)0 is a full

characterization of the input requirement set (i.e. V (yt : Kt,Ht)) and is an alternative

primal representation of the adjustment cost production technology.

The dynamic DDF is approximated empirically using Data Envelopment Analysis

(DEA). The DEA model that computes the dynamic DDF for time t under variable

returns to scale (VRS) is as follows:

3These properties are the following: the input requirement set is closed and non-empty, negative

monotonic in It, positive monotonic in xt, is a strictly convex set, the levels of yt increase with the stock

of capital, and Kt are strongly (or freely) disposable.
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−→
D i
t(yt,xt, It,Kt,Ht; gx,gI) = max

β,γ



β ≥ 0 : yt,m ≤
J∑
j=1

γjyjt,m, m = 1, ...,M ;

J∑
j=1

γjxjt,p ≤ xjt,p − βgxp , p = 1, ..., P ;

It,c + βgIc − δ
j
t,cKt,c ≤

J∑
j=1

(It,c − δjt,cKt,c),

c = 1, ..., C;

J∑
j=1

γjHj
t,f ≤ Hj

t,f , f = 1, ..., F ;

J∑
j=1

γj = 1, γj ≥ 0, j = 1, ..., J



(2)

where γ is an intensity vector of DMU weights, δ is the DMU-specific depreciation of

capital, and the
∑J

j=1 γ
j = 1 constraint allows for a variable returns to scale technology.

The dynamic characterization of equation (2) is shown by the third constraint, which

ensures that the technology set accounts for adjustment costs of quasi-fixed inputs.

Following Kapelko et al. (2015) and Skevas and Lansink (2014) the dynamic Luen-

berger productivity growth indicator (L) can be defined as follows:

L =
1

2



[−→
D i
t+1(yt,xt, It,Kt,Ht; gx,gI)

−
−→
D i
t+1(yt+1,xt+1, It+1,Kt+1,Ht+1; gx,gI)

]
+
[−→
D i
t(yt,xt, It,Kt,Ht; gx,gI)

−
−→
D i
t(yt+1,xt+1, It+1,Kt+1,Ht+1; gx,gI)

]


(3)

L is computed by taking the arithmetic average of dynamic productivity change mea-

sured by the technology at time t + 1 (i.e. the first two terms in equation (3) and the

dynamic productivity change measured by the t period technology (i.e. the last two terms

in equation (3)). A positive (negative) value of L indicates productivity growth (decline).

Following Kapelko et al. (2015) L can be further decomposed into the contributions of

dynamic technical change (∆T ), dynamic technical inefficiency change (∆PEI), and dy-
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namic scale inefficiency change (∆SEI):

L = ∆T + ∆PEI + ∆SEI (4)

The calculation of ∆T involves taking the arithmetic average of the difference between

the t and t+1 period technologies, evaluated using input-output quantities at time t (first

two terms in equation (5)) and t+ 1 (last two terms in equation (5)):

∆T =
1

2



[−→
D i
t+1(yt,xt, It,Kt,Ht; gx,gI)

−
[−→
D i
t(yt,xt, It,Kt,Ht; gx,gI)

]
+
[−→
D i
t+1(yt+1,xt+1, It+1,Kt+1,Ht+1; gx,gI)

−
−→
D i
t(yt+1,xt+1, It+1,Kt+1,Ht+1; gx,gI)

]


(5)

By measuring the average distance between two technologies in time t and t + 1,

∆T represents the shift of dynamic production technology defined by the simultaneous

expansion of gross investments and contraction of variable inputs between two consecutive

time periods.

∆PEI is calculated as the difference between the value of the dynamic DDF under

VRS at time t and t+ 1:

∆PEI =
−→
D i
t(yt,xt, It,Kt,Ht; gx,gI |V RS)

−
−→
D i
t+1(yt+1,xt+1, It+1,Kt+1,Ht+1; gx,gI |V RS)

(6)

By capturing the difference between the dynamic DDFs in VRS evaluated using the

input-output quantities in time t and t + 1, ∆PEI provides a measure of the change in

the position of a DMU relative to the dynamic production technology (i.e. how close is a

DMU to the t period technology as compared to the t+ 1 period technology).

Finally, ∆SEI is defined as follows:
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∆SEI =
−→
D i
t(yt,xt, It,Kt,Ht; gx,gI |CRS)

−
−→
D i
t(yt,xt, It,Kt,Ht; gx,gI |V RS)

−
[−→
D i
t+1(yt+1,xt+1, It+1,Kt+1,Ht+1; gx,gI |CRS)

−
−→
D i
t+1(yt+1,xt+1, It+1,Kt+1,Ht+1; gx,gI |V RS)

]
(7)

∆SEI measures the difference between the position of a DMU with regard to CRS and

VRS technologies between two time periods. A negative (positive) value of a component of

the dynamic Luenberger productivity growth suggests a negative (positive) contribution of

this component to dynamic productivity growth. For instance, a negative value of ∆PEI

implies a negative contribution of dynamic inefficiency change to dynamic productivity

growth; that is, dynamic inefficiency increased between period t and t+ 1.

2.2 Accounting for spatial spillover effects in farmers’ dynamic

productivity growth and its components

Since the main focus of this study is to explore whether neighboring farmers’ character-

istics affect farmers’ dynamic productivity growth and its decompositions, the spatially

lagged explanatory variable model (SLX) is used. The form of this model is as follows:

St = ξ0 + ξzt + θWzt +α+ ε (8)

where St is a N×1 vector of farm-specific dynamic productivity growth scores (or their

decompositions) in year t, α is a vector of farm-specific constants, zt is a year-specific

N × V matrix of farm characteristics, W is an N × N spatial weights matrix (defined

below) that summarizes the spatial relationship between farms, ξ and θ are V×1 vectors of

unknown parameters to be estimated, and ε ∼ N(0, σ2I) is an N×1 vector of disturbance

terms. Therefore, the model in (8) assumes that farm dynamic productivity growth and

its components can be explained by own and neighboring farm characteristics. These

relationships are captured by the parameter vectors ξ and θ, which are known in the

spatial econometrics literature as the direct and indirect or spillover effect, respectively.
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The direct effect captures the change in a farm’s dynamic productivity growth (or its

components) attributable to changes in the explanatory variables of that farm itself.

The indirect or spillover effect captures how a farm’s dynamic productivity growth (or

its components) changes when particular explanatory variables in the neighboring farms

change. When θ = 0, equation (8) reduces to a non-spatial panel data model.

The SLX model has been recently advocated as a more credible alternative to the

more commonly used spatial autoregressive model when the neighbors’ characteristics,

not the outcomes, are assumed to be relevant for the outcome of interest. This is the case

in our study where farmers are unlikely to have an exact knowledge of their neighboring

peers’ productivity levels (or its components) but are more likely to observe some of their

decisions or characteristics (e.g. use and performance of new farm technologies) through,

for example, direct communication with them, and adjust their production practices. In

other words, the productivity of farms is shaped by their own characteristics and decisions,

and information about these decisions or characteristics may spillover to neighboring farms

and affect their productivity growth.

Following Kapelko et al. (2015), equation (8) is estimated using a bootstrapped panel

regression with heteroskedasticity and autocorrelation robust standard errors. We use a

bootstrap approach to tackle the well-known problem of serial correlation among DEA

scores (Simar and Wilson, 2007) 4. We used the Hausman test to determine whether fixed

or random effects specifications were most appropriate for each of our regressions. The

model in (8) is estimated for dynamic productivity growth and each of its components.

3 Empirical application

3.1 Data

Our empirical application focuses on a sample of specialized dairy farms in Wisconsin,

participating in the Agricultural Financial Advisor (AgFA) program at the University

4More detailed information about the bootstrap approach used in this study can be found in Kapelko

et al. (2015)
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of Wisconsin-Madison Center for Dairy Profitability. The used data set is a balanced5

panel that contains data for 79 Wisconsin dairy farms for the period 2009-2017, a total

of 711 observations. This data set includes data on inputs, outputs, and socioeconomic

characteristics of dairy farms. We consider two outputs (i.e. milk (y1) and other output

(y2) (i.e. meet and crop output)), two variable inputs (i.e. feed (x1) and other inputs

(x2)), two quasi-fixed inputs with their corresponding investments (i.e. machinery (K1),

and buildings (K2), and two fixed inputs (i.e. total labor (H1) and agricultural land (H2)).

Following Ang and Oude Lansink (2017), we do not include livestock units (i.e. cows) as

a separate quasi-fixed input in the specification of the production technology to keep the

model empirically tractable.

Output, variable inputs, capital and investments are measured in monetary units (i.e.

at constant 2010 prices), while agricultural land and total labor are measured in acres and

hours, respectively. Following common practice, we transform all monetary outputs and

inputs into implicit quantity indices by computing the ratio of value to its corresponding

price index (Ang and Oude Lansink, 2017; Serra et al., 2011). Price indices of outputs

and inputs were obtained from the National Agricultural Statistics Service and, when

necessary, aggregated to Törngvist price indexes. Gross investments in quasi-fixed inputs

(I) in year t are computed as the beginning value of quasi-fixed inputs in year t+ 1 minus

the beginning value of quasi-fixed inputs in year t plus the beginning value of depreciation

in year t + 1. Table 1 provides descriptive statistics for the outputs and inputs used in

the DEA models.

Our selection of factors (z) that may influence farm productivity growth (and its com-

ponents) is based on data availability and past research that examines the determinants of

farm productivity growth (Skevas and Lansink, 2014). These factors are as follows: farm

subsidies, non-farm income, family savings, liquidity, debt-to-asset ratio, land tenure,

pasture, somatic cell count (SCC), margin protection program (MPP), precipitation, and

5In line with most of the spatial econometrics literature, we use a balanced panel data set in our

analysis. The reason behind this choice is that, although estimators for spatial panel data models can

be modified for unbalanced panel due to missing observations, their asymptotic properties may become

problematic if the rationale why data are missing is unknown (Elhorst, 2014).
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temperature. Farm subsidies, non-farm income, family savings and liquidity are measured

in monetary units. Liquidity is measured as the beginning of the year cash balance (Skevas

et al., 2018). Debt-to-asset ratio is computed as the value of debt divided by total farm

assets. Land tenure is measured as the ratio of land owned to total farmland operated.

Pasture is a dummy variable that takes the value of 1 if a farmer used pasture for cattle

grazing, and 0 otherwise. Somatic Cell Count, which is a main indicator of milk quality,

is evaluated at the herd average and measured in 10,000 cells per ml. MPP is a dummy

variable that takes the value of 1 in the period 2014-2017 (i.e. the period when the dairy

MPP is active), and zero otherwise. Precipitation and temperature data were obtained

from the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) maps

(http://www.prism.oregonstate.edu/). We used farm coordinates to generate monthly

mean temperature (measured in degrees Fahrenheit (F)) and precipitation (measured in

inches) for each farm, year, and season. Following Qi et al. (2015), we defined the sea-

sons in Wisconsin as follows: winter = December, January, February, and March; and

spring = April and May, summer = June through September; and autumn = October

and November. The AgFA and climate data sets were merged based on farm and year

identifiers. A descriptive statistics of the socioeconomic and environmental factors used

in the second stage regressions is presented in Table 2.

3.2 Specification of the spatial weights matrix

We use an inverse spatial weights matrix (W) to capture the structure of spatial relations

between farms. The elements of this matrix (i.e. wij) equal 1/dij, where dij is the

Euclidean distance between farmer i and j, if two farmers operate within a certain distance

d∗, and 0 otherwise. d∗ was set to the minimum distance that all farms in our sample

have at least one neighbor, which is 50 km in our sample 6. Moreover, we set all diagonal

elements of W (i.e. wii) to zero, since no farmer can be viewed as its own neighbor.

Finally, we follow common practice and scale all elements of W by its maximum eigenvalue

6This is a standard approach followed in the spatial econometric literature (see for e.g. Läpple et al.,

2017).
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(Halleck Vega and Elhorst, 2015).

4 Results and discussion

Table 3 provides a summary of the mean dynamic Luenberger productivity growth and

its components for the period 2009/2010-2016/2017. The average dynamic Luenberger

productivity growth for 2000/2001-2016/2017 is negative (-1%). All the components of

the dynamic Luenberger indicator make, on average, a negative contribution to dynamic

productivity growth. More specifically, dynamic technical change is modestly negative

implying that the sample farms have, on average, experienced technical regress during

the study period (i.e. they have not been able to improve the technology of using inputs).

The average dynamic technical inefficiency change is also modestly negative (-0.4%), which

means that farms, on average, use the existing production technology potential less ef-

ficiently over time. Dynamic scale inefficiency change also makes a negative but small

contribution to dynamic productivity growth (-0.3%). The negative dynamic scale inef-

ficiency change suggests that due to the increase in dynamic scale inefficiency between

two consecutive periods, farms produce the same output with 0.3% of the value of the

directional vector more variable inputs, and 0.3% of the value of the directional vector

less investments.

The results of the bootstrap regressions for the dynamic productivity growth and its

components are presented in Tables 4-7. These tables present the results of estimating

both a non-spatial and a spatial model for dynamic productivity growth and each of

its components. By distinguishing between the non-spatial and spatial models, we can

assess whether or not spatial spillovers affect farmers’ dynamic productivity growth and

its components. Since Hausman tests indicated that random effects are more appropriate

than fixed effects for all models, we relied on results of the random effects regressions

and show only these results. First we present the non-spatial regression results, and

compare them with the results from the spatial models. Notice that the coefficients and

significance of the non-spatially lagged regressors differ only slightly between the non-
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spatial and spatial models. Therefore, their interpretation is the same for both these

models.

The coefficients of the non-spatially lagged variables are presented in the left panel

of Tables 4-7. Farm subsidies have a negative effect on dynamic productivity growth,

technical inefficiency change, and scale inefficiency change. An explanation for this find-

ing may be that farmers have substituted farm income with subsidy income and became

less motivated to produce efficiently or expand their operations (Skevas et al., 2012).

This result is in line with the findings of previous studies (Skevas and Lansink, 2014;

Zhu and Lansink, 2010). The impact of farm subsidies on dynamic technical change is

positive, likely because higher farm subsidies provide more income and enable farmers

to keep the farm technology up to date. An increase in non-farm income increases dy-

namic productivity growth, and technical and scale inefficiency change. Higher family

savings also contribute to higher dynamic productivity growth, and technical inefficiency

change. Family savings and earnings from non-farm income can be used by farmers in

the procurement of efficiency enhancing inputs or technologies and in expanding their

operations. The effect of non-farm income on dynamic technical change is negative. This

result may be attributed to the competition between on- and off-farm activities in terms of

resources, labor, etc. (Ahituv and Kimhi, 2002; Holden et al., 2004). In this case, higher

non-farm income may reduce farmers’ incentive to produce agricultural goods and invest

in new technologies. Higher liquidity decreases dynamic productivity growth, and tech-

nical and scale inefficiency change. Farms with high liquidity might earn enough income

for household expenditure and financing farming activity, and thus are not willing to take

on challenges associated with farm efficiency improvements or expansion. The results for

liquidity further suggest that higher liquidity is associated with higher dynamic technical

change. Higher liquidity implies greater financial flexibility and allows farmers to invest

in farm assets and new technologies. The results for debt-to-asset ratio show that dy-

namic productivity growth, and dynamic inefficiency and technical change decrease with

increases in debt-to-asset ratio. One explanation for this finding is that increased debt

decreases farmers’ ability to access credit and invest in efficiency enhancing technolo-
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gies. Land tenure was found to impact positively on dynamic productivity growth and

dynamic technical inefficiency change. Farmers owning most of the land they farm may

be more motivated to adopt efficiency enhancing practices or more able to use land as

collateral to obtain funds from lenders and invest them in enhancing their operations. On

the other hand, land tenure was found to have a negative impact on dynamic technical

change. An explanation for this finding may be that farmers with more owned land have

recently invested in land acquisitions and, as a result, have less financial resources left

for investments in new farm technologies, buildings and equipment (Skevas et al., 2018).

The variable pasture has a positive impact on dynamic productivity growth and all its

components except for dynamic scale inefficiency change. Pasture access for dairy cows

is associated with welfare, health and production benefits (Auldist et al., 2000; Charl-

ton and Rutter, 2017). These benefits can translate into higher farm profitability and

ability to invest in farm assets and new technologies. Farmers with higher herd average

SCC have lower dynamic technical change. High SCC is associated with lower milk yield

and additional farm costs (Hogeveen et al., 2011) leading to reduced farm profitability

and, as a result, lower availability of financial resources for investing in farm assets and

innovations.

Regarding the climatic variables, precipitation and temperature impact significantly

dynamic productivity growth and its components. More specifically, higher precipitation

(mainly during winter and summer) impacts positively dynamic productivity growth and

its components. Higher precipitation levels can enhance plant growth and yields and result

in greater availability and lower cost of feed. Regarding the temperature variables, higher

summer and autumn temperatures (mostly) decrease productivity growth and its compo-

nents. Qi et al. (2015), in their study of climatic effects and productivity in Wisconsin

dairy farms, also found a negative effect of increased summer and autumn temperatures

on dairy farms’ productivity. High summer and autumn temperatures may contribute to

heat stress in cows resulting, among others, in reduced feed intake, decreased milk pro-

duction, and additional costs to maintain cow performance in hot conditions (e.g. cooling

systems) (West, 2003). On the other hand, increased spring temperatures contribute

14



positively to dynamic productivity growth and most of its components. Higher spring

temperatures may promote crop growth and increase feed availability, leading farmers to

use feed resources more efficiently and reduce production costs. Qi et al. (2015) also re-

ported an increase in dairy farmers’ productive as a result of higher spring temperatures.

Finally, the dummy for MPP suggests a negative impact of the introduction of MPP on

dynamic technical inefficiency change, and dynamic technical change. On the other hand,

MPP has a positive effect on farmers dynamic scale inefficiency change.

The results of the spatially lagged variables of the SLX models for productivity growth

and its components are presented in the right lower panels of Tables 4-7 7. Farmers that

have neighbors with higher farm subsidies (ceteris paribus) experience decreases in dy-

namic productivity growth (-0.4%), dynamic technical inefficiency change (-1%), and

dynamic technical change (-1.3%). Farms receiving high government payments could bid

up prices of land causing nearby farms to shrink (Key and Roberts, 2006), with negative

consequences on their ability to access external financing (e.g. due to reduced collateral

value) and make the necessary investments to keep up with technological advances and

raise productivity. Another explanation why higher subsidies for neighbors decrease a

farm’s productivity growth (and its components) is that higher subsidies may make farm-

ers substitute farm income with subsidy income and demotivate them to produce more or

improve their operations (Skevas and Lansink, 2014). This negative attitude may spillover

on to their neighbors (e.g. through communication) and decrease their motivation to use

inputs more efficiently and invest in new technologies.

Farmers operating close to other farmers with high non-farm income exhibit tech-

nical progress (+0.2%). Farmers that have higher levels of non-farm income may be

more able to invest in new farm technologies. If these farmers exchange information with

their neighbors about the effectiveness of the newly adopted technologies, then they may

induce their neighbors to adopt these technologies. The spatially lagged liquidity vari-

7In all the SLX models, we included all of the variables except the MPP and climatic variables as

spatially lagged variables. The reason behind this is that climatic factors do not differ significantly across

neighboring farms, and all farms face the same policies.
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able has a negative and significant effect on dynamic productivity growth, and all its

components except for dynamic scale inefficiency change. As mentioned above, farmers

with high liquidity may earn enough income for financing farming activity and house-

hold expenditures, and thus are less motivated to adopt new technologies and improve

their farm management practices. Neighboring farmers may imitate this negative behav-

ior and experience performance losses. Farmers surrounded by neighbors with increased

family savings have higher dynamic productivity growth, inefficiency change, and tech-

nical change. Farms with higher family savings may be more able to invest in new farm

technologies. Nearby farmers may learn from these investments by observing success or

failure, and therefore, make more optimal input and investment decisions that result in

higher productivity growth. Farmers with more indebted neighbors have a higher dy-

namic productivity growth, inefficiency change, and technical change. Debt accumulation

may be related to higher investments in new farm technology. Knowledge on the use and

benefits of these new technologies may spillover to nearby farms (e.g. through communica-

tion) and lead to more optimal investment decisions that enhance farm productivity. The

spatially lagged land tenure variable has a negative effect on dynamic inefficiency (-0.3%)

and technical change (-0.3%). Higher land tenure may give farmers more access to credit,

using land as collateral (Skevas et al., 2018), and allow them to expand their operations.

If farmers compete with their neighbors for a limited amount of land, the expansion of

a farmers’ operation may limit the growth prospects and investments of its neighbors,

leading to lower farm performance. Farmers with neighbors that use pasture land for cat-

tle grazing exhibit lower dynamic productivity growth (-0.2%), efficiency change (-0.1%),

and technical change (-0.1%). This could be due to competition for a limited amount of

available land. A closer look of the data shows that farmers using pasture land for cattle

grazing own, on average, more land than farmers that do not pasture cows (710 acres vs

580 acres). This, in turn, may limit the ability of the latter to expand their operations and

benefit from economies of scale, leading to lower efficiencies and higher overall production

costs. Finally, the dynamic productivity growth and all its components (except dynamic

technical change) are lower for farmers operating close to other farmers that have cows
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with high SCC. High SCC may be related to lack of knowledge and technical skills to

control mastitis. Farmers lacking such knowledge may share wrong information about

prevention and control of mastitis with their neighbors, leading to milk yield losses and

additional expenditures to reduce the level of mastitis (Hogeveen et al., 2011). This, in

turn, will result in lower farm profitability and ability to invest in farm assets and new

technologies.

5 Conclusions

This article examines the effect of neighboring farmers’ characteristics on dynamic pro-

ductivity growth and its decompositions. The empirical application focuses on dairy farms

in Wisconsin over the period 2009-2017 and shows that neighboring farmers’ characteris-

tics play an important role in explaining farm performance. More specifically we found

that neighboring farmers’ financial and production characteristics influence farm dynamic

productivity growth and its components. Higher liquidity and subsidies for neighbors de-

crease a farm’s dynamic productivity growth and its components, while higher debt and

savings have the opposite effect. Regarding farmers’ production characteristics, farmers

with neighbors that own more of the land they farm, own cows with elevated SCC, and

use pasture land for cattle grazing experience declines in dynamic productivity growth

and its components. One channel through which these effects may arise is through com-

petition between neighboring farms for a limited amount of production resources (e.g.

land, labor). For example, farmers that receive more subsidies may be more able to in-

vest in new technologies and expand their operations. When farms compete with their

neighbors for a limited amount of available farm land, then such expansions may limit

the growth prospects of neighboring farms and result in decreased productivity. A second

channel through which neighboring farmers’ characteristics may affect farm performance

is through information sharing and influence between neighboring farmers. For instance,

if farmers that own cows with elevated SCC levels lack the knowledge to control mastitis

and give wrong information about mastitis prevention and control to their neighbors, then
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they may all experience productivity regress. In addition to neighboring farmers’ char-

acteristics, own-farm characteristics, such as debt-to-asset ratio and climatic conditions,

were found to play an important role in explaining variability in productivity growth and

its components.

The findings from this study have implications for the development of programs aimed

at improving farm performance. Specifically, the fact that interdependence between neigh-

boring farms affects their performance, implies that policies aiming at improving farm

performance should not assume independent farmer behavior but account for spatial inter-

actions among neighboring farms. For example, extension programs aiming at promoting

productivity enhancing technologies or management practices may target neighborhood

networks (rather than individuals) and take advantage of existing interactions between

neighbors to more efficiently reach their goals.
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Läpple, D., Holloway, G., Lacombe, D. J., and O’Donoghue, C., 2017. Sustainable tech-

nology adoption: a spatial analysis of the Irish Dairy Sector. European Review of

Agricultural Economics 44 (5),810–835.

Lien, G., Kumbhakar, S. C., and Hardaker, J. B., 2017. Accounting for risk in productivity

analysis: an application to Norwegian dairy farming. Journal of Productivity Analysis

47 (3),247–257.

Mary, S., 2013. Assessing the impacts of pillar 1 and 2 subsidies on TFP in French crop

farms. Journal of Agricultural Economics 64 (1),133–144.

Pede, V. O., Areal, F. J., Singbo, A., McKinley, J., and Kajisa, K., 2018. Spatial depen-

dency and technical efficiency: an application of a Bayesian stochastic frontier model

to irrigated and rainfed rice farmers in Bohol, Philippines. Agricultural economics

49 (3),301–312.

Qi, L., Bravo-Ureta, B., and Cabrera, V., 2015. From cold to hot: Climatic effects and

productivity in Wisconsin dairy farms. Journal of dairy science 98 (12),8664–8677.

Rizov, M., Pokrivcak, J., and Ciaian, P., 2013. CAP subsidies and productivity of the EU

farms. Journal of Agricultural Economics 64 (3),537–557.

Roberts, M. J. and Key, N., 2008. Agricultural payments and land concentration: a semi-

parametric spatial regression analysis. American Journal of Agricultural Economics

90 (3),627–643.

Serra, T., Lansink, A. O., and Stefanou, S. E., 2011. Measurement of dynamic efficiency: A

directional distance function parametric approach. American Journal of Agricultural

Economics 93 (3),756–767.

Silva, E., Lansink, A. O., et al., 2013. Dynamic efficiency measurement: a directional

distance function approach. Tech. rep. Universidade do Porto, Faculdade de Economia

do Porto.

20



Simar, L. and Wilson, P. W., 2007. Estimation and inference in two-stage, semi-parametric

models of production processes. Journal of econometrics 136 (1),31–64.

Skevas, T. and Lansink, A. O., 2014. Reducing pesticide use and pesticide impact by pro-

ductivity growth: the case of Dutch arable farming. Journal of agricultural economics

65 (1),191–211.

Skevas, T., Lansink, A. O., and Stefanou, S. E., 2012. Measuring technical efficiency in the

presence of pesticide spillovers and production uncertainty: The case of Dutch arable

farms. European Journal of Operational Research 223 (2),550–559.

Skevas, T., Wu, F., and Guan, Z., 2018. Farm Capital Investment and Deviations from

the Optimal Path. Journal of Agricultural Economics 69 (2),561–577.

Storm, H., Mittenzwei, K., and Heckelei, T., 2014. Direct payments, spatial competition,

and farm survival in Norway. American Journal of Agricultural Economics 97 (4),1192–

1205.

Weiss, C. R., 1999. Farm growth and survival: econometric evidence for individual farms

in Upper Austria. American journal of agricultural economics 81 (1),103–116.

West, J., 2003. Effects of heat-stress on production in dairy cattle. Journal of dairy science

86 (6),2131–2144.

Wollni, M. and Andersson, C., 2014. Spatial patterns of organic agriculture adoption:

Evidence from Honduras. Ecological Economics 97,120–128.

Zhu, X. and Lansink, A. O., 2010. Impact of CAP subsidies on technical efficiency of crop

farms in Germany, the Netherlands and Sweden. Journal of Agricultural Economics

61 (3),545–564.

21



Tables

Table 1: Descriptive statistics for the variables used in the DEA analysis

Variable Unit Mean Standard deviation

Milk Index, Constant 2010 $ 1,397,255 1,778,692

Other output Index, Constant 2010 $ 51,121 73,941

Feed Index, Constant 2010 $ 386,469 550,028

Variable inputs, except feed Index, Constant 2010 $ 649,628 764,945

Buildings Index, Constant 2010 $ 415,620 583,401

Machinery and equipment Index, Constant 2010 $ 194,681 780,084

Gross investment in buildings Index, Constant 2010 $ 87,711 243,673

Gross investment in machinery

and equipment
Index, Constant 2010 $ 73,432 108,704

Labor Hours 14,115 17,506

Land Acres 589 505
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Table 2: Descriptive statistics of data used in the regressions

Variable Units Mean Standard deviation

Farm subsidies $10,000 1.380 2.267

Non-farm income $10,000 1.500 4.207

Family savings $10,000 8.731 10.040

Liquidity $10,000 0.491 11.569

Debt-to-asset ratio ratio 0.341 0.229

Land tenure ratio 0.585 0.273

Pasture (0/1) 0.030 0.171

Somatic cell count 10,000 cells 9.981 10.740

Autumn precipitation inches 2.571 0.584

Spring precipitation inches 3.684 0.837

Summer precipitation inches 3.826 0.927

Winter precipitation inches 1.677 0.47

Autumn temperature degrees F 43.296 2.879

Spring temperature degrees F 49.789 2.462

Summer temperature degrees F 66.491 1.391

Winter temperature degrees F 23.811 4.154

MPP (0/1) 0.375 0.485
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Table 3: Evolution of dynamic Luenberger productivity growth and its components

Period

Dynamic Luenberger

productivity

change

Dynamic technical

change

Dynamic technical

inefficiency

change

Dynamic scale

inefficiency

change

2009/2010 -0.041 -0.004 -0.021 -0.016

2010/2011 -0.040 -0.004 -0.022 -0.013

2011/2012 0.005 -0.009 0.000 0.014

2012/2013 0.035 0.014 0.026 -0.006

2013/2014 -0.009 -0.009 -0.007 0.007

2014/2015 -0.021 -0.008 -0.014 0.001

2015/2016 -0.020 -0.005 -0.012 -0.002

2016/2017 0.021 0.011 0.016 -0.006

Average,

2009/2010

-2016/2017

-0.010 -0.002 -0.004 -0.003
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Table 4: Results of the non-spatial random effects (RE) and SLX models to explain dynamic productivity growth

Non-spatial RE SLX

90% CI 90% CI

Coef. Lower bound Upper bound Coef. Lower bound Upper bound

Farm subsidies -0.003 -0.004 -0.002 -0.002 -0.003 -0.001

Non-farm income 0.001 0.001 0.001 0.001 0.001 0.001

Family savings 4.0E-04 1.9E-04 0.001 0.001 3.4E-04 0.001

Liquidity -0.001 -0.001 -3.7E-04 -0.001 -0.001 -4.5E-04

Debt/asset ratio -0.026 -0.035 -0.018 -0.029 -0.039 -0.02

Land tenure 0.011 0.004 0.019 0.009 -4.5E-05 0.017

Pasture 0.016 0.005 0.028 0.013 3.9E-04 0.024

Somatic Cell Count -1.8E-04 -3.7E-04 2.4E-05 -3.3E-05 -2.5E-04 1.9E-04

Precipitation autumn -0.001 -0.005 0.004 -2.2E-04 -0.006 0.005

Precipitation spring 0.002 -0.001 0.005 0.001 -0.002 0.004

Precipitation summer -0.004 -0.007 -4.5E-04 -0.004 -0.007 2.4E-05

Precipitation winter 0.049 0.04 0.057 0.05 0.041 0.058

Temperature autumn -0.006 -0.007 -0.005 -0.006 -0.007 -0.004

Temperature spring 0.004 0.003 0.006 0.005 0.003 0.007

Temperature summer -0.004 -0.007 -0.001 -0.007 -0.011 -0.004

Temperature winter -3.7E-04 -0.001 4.5E-04 3.9E-04 -0.001 0.001

Margin Protection Program 0.007 -7.4E-05 0.013 0.007 -0.002 0.016

W Farm subsidies - - - -0.004 -0.009 -3.7E-04

W Non-farm income - - - 0.002 -0.002 0.007

W Liquidity - - - -0.001 -0.002 -3.9E-04

W Family savings - - - 0.003 0.001 0.004

W Debt/asset ratio - - - 0.008 0.004 0.013

W Land tenure - - - -0.002 -0.006 0.001

W Pasture - - - -0.002 -0.003 -0.001

W Somatic Cell Count - - - -0.002 -0.003 -0.001
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Table 5: Results of the non-spatial random effects (RE) and SLX models to explain dynamic inefficiency change

Non-spatial RE SLX

90% CI 90% CI

Coef. Lower bound Upper bound Coef. Lower bound Upper bound

Farm subsidies -0.001 -0.001 -4.2E-04 -0.001 -0.001 -2.5E-04

Non-farm income 4.0E-04 2.1E-04 1.0E-03 4.0E-04 2.0E-04 0.001

Family savings 1.8E-04 9.0E-05 2.7E-04 2.6E-04 1.7E-04 3.5E-04

Liquidity -9.1E-05 -1.6E-04 -2.2E-05 -1.4E-04 -2.1E-04 -6.2E-05

Debt/asset ratio -0.019 -0.022 -0.015 -0.019 -0.023 -0.015

Land tenure 0.008 0.005 0.011 0.007 0.004 0.011

Pasture 0.009 0.004 0.014 0.008 0.003 0.012

Somatic Cell Count -5.0E-05 -1.3E-04 2.8E-05 1.05E-05 -7.6E-05 9.92E-05

Precipitation autumn -0.002 -0.004 -9.0E-05 0.001 -0.001 0.004

Precipitation spring 4.6E-04 -0.001 0.002 -0.001 -0.002 3.5E-04

Precipitation summer -0.001 -0.002 4.5E-04 -0.001 -0.002 4.5E-04

Precipitation winter 0.038 0.034 0.041 0.041 0.037 0.044

Temperature autumn -0.003 -0.004 -0.003 -0.002 -0.003 -0.002

Temperature spring 0.004 0.003 0.005 0.005 0.005 0.006

Temperature summer -0.005 -0.006 -0.004 -0.008 -0.009 -0.006

Temperature winter -0.001 -0.001 -3.5E-04 -2.6E-05 -3.8E-04 3.4E-04

MPP -0.002 -0.005 4.0E-04 -0.004 -0.008 -2.2E-04

W Farm subsidies - - - -0.010 -0.011 -0.008

W Non-farm income - - - 0.002 -1.1E-05 0.004

W Liquidity - - - -0.001 -0.001 -0.001

W Family savings - - - 0.003 0.002 0.003

W Debt/asset ratio - - - 0.006 0.005 0.008

W Land tenure - - - -0.003 -0.004 -0.001

W Pasture - - - -0.001 -0.002 -0.001

W Somatic Cell Count - - - -0.001 -0.001 -0.001
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Table 6: Results of the non-spatial random effects (RE) and SLX models to explain dynamic technical change

Non-spatial RE SLX

90% CI 90% CI

Coef. Lower bound Upper bound Coef. Lower bound Upper bound

Farm subsidies 0.001 0.001 0.001 0.001 0.001 0.001

Non-farm income -2.0E-04 -2.7E-04 -1.2E-04 -2.1E-04 -2.9E-04 -1.3E-04

Family savings -3.5E-05 -7.0E-05 6.3E-07 2.9E-05 -8.7E-06 6.6E-05

Liquidity 3.6E-04 3.3E-04 3.9E-04 3.2E-04 2.9E-04 3.5E-04

Debt/asset ratio -0.016 -0.017 -0.014 -0.019 -0.02 -0.017

Land tenure -0.005 -0.006 -0.004 -0.006 -0.007 -0.005

Pasture 0.005 0.003 0.007 0.003 0.001 0.005

Somatic Cell Count -2.0E-04 -2.3E-04 -1.6E-04 -1.3E-04 -1.7E-04 -1E-04

Precipitation autumn 0.001 3.8E-04 0.002 0.008 0.008 0.009

Precipitation spring 4.3E-04 -4.9E-05 0.001 4.3E-04 -4.9E-05 0.001

Precipitation summer 0.002 0.001 0.002 0.001 4.4E-04 0.002

Precipitation winter 0.015 0.013 0.016 0.02 0.018 0.021

Temperature autumn 0.001 4.8E-04 0.001 0.001 0.001 0.001

Temperature spring 0.001 0.001 0.002 0.003 0.003 0.004

Temperature summer -0.005 -0.006 -0.005 -0.007 -0.008 -0.007

Temperature winter -2.9E-04 -4.2E-04 1.5E-04 9.9E-05 -4.5E-05 2.4E-04

MPP -0.006 -0.007 -0.005 -0.004 -0.005 -0.002

W Farm subsidies - - - -0.013 -0.013 -0.012

W Non-farm income - - - 0.003 0.002 0.003

W Liquidity - - - -0.001 -0.001 -0.001

W Family savings - - - 0.001 0.001 0.002

W Debt/asset ratio - - - 0.010 0.009 0.010

W Land tenure - - - -0.003 -0.004 -0.003

W Pasture - - - -0.001 -0.001 -0.001

W Somatic Cell Count - - - -1.4E-04 -2.8E-04 5.8E-06
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Table 7: Results of the non-spatial random effects (RE) and SLX models to explain dynamic scale inefficiency change

Non-spatial RE SLX

90% CI 90% CI

Coef. Lower bound Upper bound Coef. Lower bound Upper bound

Farm subsidies -0.002 -0.003 -0.002 -0.002 -0.003 -0.001

Non-farm income 0.001 3.2E-04 0.001 0.001 0.001 0.001

Family savings 1.7E-04 -1.6E-05 3.6E-04 1.5E-04 -6.2E-05 3.6E-04

Liquidity -0.001 -0.001 -0.001 -0.001 -0.001 -0.001

Debt/asset ratio 0.006 -0.002 0.015 0.007 -0.002 0.016

Land tenure 0.005 -0.002 0.012 0.005 -0.003 0.012

Pasture 0.006 -0.004 0.016 2.7E-04 -0.011 0.011

Somatic Cell Count 2.5E-05 -1.5E-04 2.0E-04 7.1E-05 -1.3E-04 2.7E-04

Precipitation autumn 0.001 -0.003 0.005 -0.008 -0.014 -0.003

Precipitation spring 7.2E-05 -0.002 0.002 0.003 2.7E-04 0.006

Precipitation summer -0.003 -0.006 2.6E-05 -0.001 -0.004 0.003

Precipitation winter -0.003 -0.01 0.004 -0.009 -0.017 -0.001

Temperature autumn -0.003 -0.004 -0.002 -0.004 -0.006 -0.003

Temperature spring 6.6E-05 -0.001 0.001 -0.002 -0.004 -0.001

Temperature summer 0.004 0.001 0.006 0.006 0.003 0.009

Temperature winter 0.001 -1.4E-04 0.001 4.3E-04 -4.2E-04 0.001

MPP 0.013 0.008 0.019 0.015 0.006 0.024

W Farm subsidies - - - 0.002 -0.003 0.007

W Non-farm income - - - -0.001 -0.005 0.003

W Liquidity - - - 1.5E-04 -0.001 0.001

W Family savings - - - -0.002 -0.003 -2.5E-04

W Debt/asset ratio - - - -0.004 -0.013 0.001

W Land tenure - - - 0.005 -0.002 0.009

W Pasture - - - -7.8E-06 -0.001 0.001

W Somatic Cell Count - - - -0.001 -0.002 -5.2E-05
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