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Abstract

This paper describes the computer implementation of theDynamicNorthFloridaDairy farm model
(DyNoFlo Dairy). The DyNoFlo Dairy is a decision support system that integrates nutrient budgeting,
crop, and optimization models created to assess nitrogen (N) leaching from North Florida dairy farm
systems and the economic impacts resulting from reducing it under different climatic conditions. The
decision support system, based on Excel® and Visual Basic® software, responds to dairy-specific
environmental (climate and soils) and managerial characteristics (livestock management, waste man-
agement, crop systems management) and can be used to study the economic and ecologic sustainability
of these systems. The DyNoFlo Dairy model is a dynamic adaptation of the framework “balance” of
nutrients in dairy farms, commonly used in Florida. The DyNoFlo Dairy model incorporates Markov-
chain probabilistic simulation of cow-flows and crop simulation for historical climatic years El Niño
southern oscillation (ENSO), automated optimization of managerial options, participatory modeling,
and user friendliness. This paper discusses the model components and its computer implementation in
a user-friendly application. The model was parameterized for conditions found in North Florida dairy
farm systems. It is intended to be a tool for producers, regulatory agencies, and extension services,
and because of that, participatory and interdisciplinary work was pursued during model creation, cal-
ibration, and validation. A case study for a synthesized North Florida dairy farm using the DyNoFlo
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Dairy model found substantial differences in the N leaching for different ENSO phases and other
managerial factors; and the possibility of decreasing N leaching up to 25% while still maintaining
profitability levels.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Reduction of N leaching from dairy farm systems in North Florida is recognized as the
most important factor for successful business in the future (Staples et al., 1997; Fraisse
et al., 1996; Van Horn et al., 1998). Because of increasing concern with N levels in water
in the Suwannee River Basin, North Florida dairy farms are being more closely scrutinized
by regulatory agencies (Giesy et al., 2003), and effective tools to estimate the amount of
pollution of specific operations as well as potential ways to mitigate the problem inside the
farm gate is an imperative need (Van Horn et al., 2001).

The complexity of dairy farms in North Florida justifies the creation of a whole-farm
model as a decision support system, integrating several modeling approaches, in order to bet-
ter analyze these systems (Herrero et al., 2000). Evidence indicates that climatic conditions
(i.e., temperature, rainfall, solar radiation), which are influenced by ENSO phases (O’Brien
et al., 1999), impact overall N leaching on North Florida dairy farms. Consequently, dairy
operations could evaluate different management strategies depending on seasonal forecasts.
For example, in North Florida, wetter and colder El Niño winters increases N leaching
because of reduced plant N uptake and increased water percolation, while dryer La Niña
spring and summers decreases N leaching because of less water percolation.

The objective of this paper is to describe the Excel-basedDynamicNorthFloridaDairy
farm model (DyNoFlo Dairy). The DyNoFlo Dairy model is a decision support system
that integrates nutrient budgeting, crop, and optimization models created to assess nitrogen
(N) leaching from North Florida dairy farm systems and the economic impacts resulting
from reducing it under different climatic conditions. The model responds to specific envi-
ronmental (climate and soils) and managerial characteristics of dairies (total number of
cows, milk production, crop rotations, waste system, etc.) and can be used to study the
economic and ecological sustainability of these systems. The DyNoFlo Dairy model is a
dynamic adaptation of the nutrient “balance” or “budgeting” framework in dairy farms,
commonly used in FloridaVan Horn et al. (1991, 1994, 1998, 2001)andNRCS (2001).
The DyNoFlo Dairy model incorporates Markov-chain probabilistic simulations of cow
flows (DeLorenzo et al., 1992), crop simulation models (Jones et al., 2003) for historical
climatic years for El Nĩno southern oscillation (ENSO) (O’Brien et al., 1999), automated
linear programming optimization of managerial options (Hardaker et al., 2004), partici-
patory modeling (Geurts and Joldersma, 2001), and user friendliness. The actual model
and complementary documentation are available at the Southeastern Climate Consortium
website,http://www.AgClimate.org, in the dairy section.

The Van Horn et al. (1991, 1994, 1998, 2001), NRCS (2001), and Lanyon (1994)
approaches were adjusted, modified, and used for keeping track of dynamic N movement in

http://www.agclimate.org/
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all system components. Agronomic measures of nutrient balance and tracking of inputs and
outputs for various farm management units can provide the quantitative basis for manage-
ment to better allocate manure to fields, to modify dairy rations, or to develop alternatives
to on farm manure application (Lanyon, 1994). For instance, identifying where pollutants
are being directly discharged and taking measures to reduce these discharges are more
easily accomplished than controlling the indirect sources or “non-point” source pollutants
(Environmental Literacy Council, 2004). Indeed, historically, scientists have been able to
track single, or “point” sources of pollution, but tracking multiple, or “non-point” sources
has been difficult (Ondersteijn et al., 2002).

Crop models (Jones et al., 2003; Jones et al., 1998) are process based dynamic simulation
models that allow translating biophysical and environmental conditions into agricultural
outcomes (Philips et al., 1998). Crop models can be used to estimate monthly biomass
accumulation and N leaching by a number of crop and pasture sequences under different
climatic conditions, depending on soil conditions, manure applications, and other manage-
rial choices.

Linear programming models (LP) are optimization models that can devise alternative
management choices that maximize (minimize) an objective function according to a set of
restrictions (Hardaker et al., 2004). Linear programming models have been widely used in
analysis of farming systems, beginning about the time of the Heady and Candler book in
1958 (Heady and Candler, 1958).

Optimization methods to decrease manure N excretion are widely reported in the liter-
ature (Tedeschi et al., 2003; Ruiz et al., 2001; Wang et al., 1999), however, these mostly
focus on diet alterations and do not include economic variables. Fewer studies exist at the
farm level involving components of a dairy system. One of them is a study performed in the
Netherlands (Jansen et al., 1999) that includes not only dairy farms but also other land uses,
on a regional basis, and economic modules.Jansen et al. (1999)use a linear programming
model to minimize production costs constraining N leaching; however, it does not have
sufficient detail to specifically represent all components of a complex dairy farm system.

Multiple feedback loops were used during a 2-year process of interaction with stake-
holders to create the DyNoFlo Dairy model. This iterative process involved creation of
prototype models, interaction with stakeholders, and improvement of prototype models
according to suggestions and feedback. Many adjustments were made and expert advice
was incorporated from farmers, specialists in the government, private, extension, university
and production sectors. Detailed information about the participatory process can be found
in Cabrera (2004). During this participatory process, every effort was made to create a
user-friendly application for the final users.

2. Model description

2.1. Conceptual decision support system

Since a whole dairy farm encompasses environmental, economic, and biophysical com-
ponents, its analysis is best served by a systems approach that accounts for the interactions of
these components, and that can trace the consequences of an intervention through the entire
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Fig. 1. Schematic representation of the DyNoFlo Dairy model.

system (Kelly, 1995). The systems approach used is farming systems research and extension
(FSRE) as described byHildebrand (1990). “Farm management” (Hazell and Norton,
1986) replaces “farm household” in livelihood systems analyses for commercial or indus-
trial farm dimensions such as North Florida dairy farms. The farming system is composed of
an arrangement of subsystems, i.e., biophysical, environmental, and economic components.

In order to assess what would happen with the whole dairy operation and what would
happen specifically with nitrate flow under different climate scenarios (i.e., during wet
cold years such as El Niño years in contrast to dry warm La Niña years), models of these
scenarios are set up (Thornley and Johnson, 1990). The successful planning of an animal
waste management system requires the ability to simulate the impact of waste production,
storage, treatment, and utilization on the water resources; it must address overall nutrient
management for the operation (De et al., 2004; Fraisse et al., 1996).

2.2. Overall characteristics

The DyNoFlo Dairy model consists of the following components (Fig. 1):

1. the driver control,
2. the livestock module,
3. the waste management system module,
4. the forage system module,
5. the climatic module,
6. the economic module,
7. the optimization module.

The DyNoFlo Dairy model is an integrated, whole-dairy farm simulation model that
links decision making with biophysical, environmental, and economic processes. The main
objective of the DyNoFlo Dairy model is to predict monthly N leaching and profit in response
to environmental (climate and soils) and managerial characteristics of farms (livestock
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management, waste management, and crop management). The DyNoFlo Dairy model can
be used to study the economic and ecological sustainability of these systems, as well as to
diagnose sources of problems and search for feasible alternative management practices.

The simulation approach includes dynamic (monthly steps) simulation models, crop
models, and optimization models integrated by a driver control. The livestock and waste
modules follow an adaptation of the budgeting framework that tracks the flow of N through
the entire dairy farm system along with production and additional economic variables,
according to a pre-defined set of management and climatic conditions. Crop models assess
the N recycled (uptake) by plants and the amount of N leached (N below the root zone)
according to management, genetic, soil, and climatic specific conditions. The optimization
model consists of a linear programming model that either minimizes N leaching for specific
farm conditions and profit levels or maximizes profit subject to constrained N leaching levels.
The DyNoFlo Dairy model incorporats Markov-chain probabilistic simulation of cow flows
and crop simulation for 43 historical climatic years (El Niño southern oscillation), automated
optimization of managerial options, participatory modeling, and user friendliness.

The DyNoFlo Dairy model, a decision support system, was developed in Excel® using
embedded Visual Basic® in order to produce a user-friendly final product for farmers,
Extension services, and regulatory agencies. Users need only open an Excel file and the
model is ready to work. Crop models were previously run using the Decision Support
System for Agrotechnology Transfer, DSSAT v4.0 (Jones et al., 2003). Crop model outputs
were exported to Excel® to be implemented in the DyNoFlo Dairy model. The optimization
component is automatically set up and solved taking advantage of the solver tool that ships
with Excel.

2.3. Components

The livestock model simulates cow flow and manure N excretion. The waste model
receives information from the livestock model and simulates manure N flow through the
waste handling system. The crop models receive information from the waste model and
environmental information on climate and soils to simulate N leaching and biomass accu-
mulation (plant growth) in the crop fields. The livestock, waste, and crop models run in
parallel, dynamically in monthly steps. Each one of them is a function of a set of man-
agement practices. The crop simulation outputs are measured in monthly estimations of
overall N leaching and biomass accumulation on a dairy farm. An economic component
goes across the livestock, waste, and crop models to estimate monthly overall profit.

The optimizer, an automated tool, is a linear programming model that solves a matrix
built with outputs of monthly N leaching and profit from several simulations with different
management scenarios. Management strategies suggested by the optimizer can be compared
with feasible farm practices in consultation with the farm manager to find the feasible
adjustments in each particular case in an iterative process of adjusting management strategies
and rerunning the simulation.

2.3.1. Interface
For user friendliness, all modules and their connections are graphically represented in the

starting spreadsheet (Fig. 2). A “menu” appears automatically when the file is first opened
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Fig. 2. Main screen of the DyNoFlo Dairy model displays a diagram of a dairy farm with all its main components.

or when it is called by a button inserted in this spreadsheet called “back to main menu.”
This menu first shows a tab called “start” with a greeting welcoming the user to the system,
briefly explaining the purpose of the application, and suggesting the read-me and help files
be read before starting the runs. This welcoming tab also gives contact information to obtain
support. The read-me file is in the spreadsheet. Both, the “welcome” page and the “start”
spreadsheet have a button to trigger a help file.

The menu (Fig. 3) has eight tabs (top) and a common section (bottom). Besides the
welcoming start tab, there are tabs for: livestock, nitrogen, soil, crop, climate, economics
and optimize. In each of these the user can navigate for reviewing, inputting and/or selecting
specific data. The common section consists of a drop-box menu to select small, medium, or
large farm as a template, buttons to interchange the simulation visualization, and a button
that makes the model run.

The livestock tab deals with cow-flow and milk production variables; the nitrogen tab
refers to waste management system and water usage; the soil tab deals with the farm loca-
tion and soil type; the crop tab defines all the farm fields, their size and their crops or
crop sequences; the climate tab defines the number of years of simulation together with
the climatic year (El Nĩno, La Nĩna, or neutral climatic years, according to ENSO); the
economic tab allows the user to personalize revenues and expenses for specific farms; and
the optimization tab allows the user to customize management options a farm could adjust
to decrease N leaching.

For all modules there are default values for synthesized small, medium and large farms
to start with (the drop-box menu at the bottom allows this customization) as a help to
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Fig. 3. Screen displays of the DyNoFlo Dairy model: (A) the start greeting menu control; (B) the livestock module control; (C) the waste management control; (D) dairy
farm location and soil type by farm component control; (E) forage systems component control; (F) the climatic component control; (G) the economic component control;
(H) the optimization control.
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the user for introducing information. After the initial information is inputted, the user can
press the “run” button and the model will start running. There is an initial time lag to let
the model self adjust and then the results are seen in real time as numbers and graphs
change on the screen. After running, the user can review the results by moving a scrollbar
altering the timeline of the run. The user can also review the database generated by the
results by scrolling down the spreadsheet. Excel® software is one of the most widely used
computer programs. The DyNoFlo Dairy model takes advantage of this fact and delivers an
application that will be easier to adopt for final users as an Excel® file (.xls extension). The
DyNoFlo Dairy model does not change any of the normal capabilities of Excel software; it
only protects the Visual Basic code and some cell contents from unintended changes, but
leaves all other Excel capabilities intact so the users can utilize the Excel as they normally
do to perform spreadsheet calculations, printouts, or take any other action together with the
farm simulation.

2.3.2. The driver control
The driver control is the dynamic component that integrates and controls the simultaneous

run of all other modules. The driver control also summarizes monthly estimations of N
leaching and profitability by tracking the nitrogen and profit flows across all other modules.

The livestock module estimates the amount of N entering the system through the feed, as
a function of monthly milk production and the level of crude protein in the diet. It estimates
the amount of N utilized by the livestock in weight gain, reproductive functions, and milk
production, according to the Florida standards and the number of animals in each specific
group of the herd. It then calculates the amount of N excreted by each group of livestock
and assigns amounts of N going to concentrated areas, pasture and crop land, and to the
waste management system, by using differences, user inputs of confined time, seasonality,
herd management, and standards for North Florida.

The waste management module continues the N flow to the crop land either in the pastures
or in the sprayfields. Pastures receive the N excreted either in the concentrated areas (after
they are collected and distributed in the fields) or by direct deposition by grazing animals
(dry cows, heifers, and milking cows during non-confined time), while sprayfields receive
the N in the effluent collected through the waste management system produced by milking
cows during confined time. The waste management module also estimates the amounts of
N volatized when the manure is deposited on the soil either as direct deposition or sprayed
by an irrigation system by defaulting to North Florida estimations or by user defined values.
In the case of the effluent applied in sprayfields, it first passes through a treatment in the
waste management system. All farms in the study had some variation of a “flushing” waste
management system and the waste management module estimates the amounts of N moving
from one to the next component of this waste system until it reaches the soil of the sprayfield.

Whether the N is directly deposited in pastures or applied in sprayfields, pre-run crop
simulation models estimate the amounts of N used by the crops as well as the amount of N
leached by these fields, according to specific parameters of the amounts and type of manure
N received, type of soil, crops present in the fields and detailed climatic characteristics. The
user defines the number of years, the farm size, the field size, the crop sequences in each
field, the type of soil by farm location, the climatic year (El Niño, La Nĩna, or neutral year)
or the 43 years climate average.
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At the end, the economic module estimates the overall monthly profit as the difference
between revenues and expenses including the value of the estimated produced biomass and
N leaching as revenue and expense, respectively.

2.3.3. The livestock module
The livestock module simulates cow-flows by using a Markov-chain probabilistic

approach for a multidimensional matrix that includes cow age, months in milk, months
in pregnancy, and lactation stage (lactation is the number of calvings (parity) of a cow).
Markov chains for simulation of flow of cows are widely described in the literature of
dairy economics (Kennedy and Scott, 1993; DeLorenzo et al., 1992). The livestock module
uses number of cows in different states to estimate seasonal rates of culling, reproduction,
and replacements of animals, feed requirements, and milk production based upon histor-
ical North Florida dairy records from the Dairy Herd Improvement Association (DHIA,
www.dhia.org) summarized byde Vries (2004). Details and quantification of relationships
of the livestock model can be found inCabrera (2004).

The manure N excreted by a specific cow state is estimated as a function of milk produc-
tion, for milking cows (Nennich et al., 2003); and by a function of book values (USDA, 1996,
1992), for dry cows, heifers, and bulls. For example, to estimate the manure N produced by
milking cows in a giving month, Eq.(1) was used:

NMm =



9∑
k=1

7∑
j=0

18∑
i=1

(0.36+2.4−3(Mimk)+6−5(Mimk)2 − 3−7(Mimk)3)(Cijk)(Wm)




(1)

where NMm is the amount of manure N produced by milking cows in month of the yearm, i
the months in milk after calving,j the pregnancy months,k the lactation cycle,m the month
of the year,Mimk the milk production rate for a specific cow group determined by the sub
indices,Cijk represents the number of cows in a group determined by the sub indices, and
Wm is the number of days on the monthm. The coefficients in the equation were determined
by fitting a curve that estimates the manure N excreted based on milk production based
uponVan Horn et al. (1998).

The livestock model uses information of the total number of adults cows (TAC) and the
rolling herd average (RHA). For further customization and for other estimations the user
can input other layers of information such as the total number of bulls, the percent of heifers
raised on the farm, the percent milk production variation through the year, the amount of
crude protein in the diet, the percent of confined time, and the percent of time milking cows
spend in concentrated areas (Fig. 3B). For the confined time, there is an additional button
that allows the user to enter monthly variations of confined time, if desired. Using these
initial conditions, the model is capable of self-adjusting to reach a seasonal steady state of
cow flow. This is the way North Florida dairy farms operate, and different model runs could
account for plans to increase or decrease herd size.

Markov chains represent the states cows go through, as described below. When a female
calf is born it gains weight for 12 months. At that age, pregnancies are sought through
artificial insemination or by the use of bulls. If the heifer is not pregnant at 24 months,

http://www.dhia.org/


V.E. Cabrera et al. / Computers and Electronics in Agriculture 49 (2005) 286–308 295

it will be culled. The proportion of culling of heifers for not being pregnant is very low.
After 9 months of pregnancy a calf is born and the heifer enters the milking group as a
fresh, first lactation, first month, open cow. Local information indicates that not all farmers
raise their own replacements or they do not raise all their needed replacements to maintain
the herd size. In those cases, the model can be easily adjusted by a percentage estimate of
replacements raised on the farm.

During the first lactation cycle, Markov chains divide cows into different categories
according to whether or not they are pregnant, how many months they are pregnant and
how many months they have been milking. The possible states or categories into which cows
stay at any point in time depends on the model dimensions: 10 months for lactations× 32
months for growing or in milking× 10 months for pregnancy = 3200 states.

A voluntary waiting period (VWP) of 45–60 days will be observed before starting the
reproductive program again in a first lactation cow. An average re-conception rate for Florida
is 16%, meaning that only 16% of the cows of first (or higher) lactation will get pregnant in
an attempt, but this varies, and the model accounts for these variations (conceptions attempts
are repeated every 21 days, following estrous cycle). The pregnancy rate that encompasses
heat detection together with conception rate decreases with months in milk and increases
with colder months.

If after 12 months in milking the cow is not pregnant, it will be culled from the herd.
Fewer cows will arrive at higher lactation cycles because there is always a chance for any
cow to be culled for any another reason besides reproduction. The culling rate depends on
cow stage: heifer or adult (months in milk) and the season. For example, higher culling rates
are expected in warmer months and in the first months of milking (for more details seede
Vries (2004)).

Cows produce different amounts of milk depending on lactation stage, months in milk,
and season of the year. These milk production rates can be adjusted for every specific farm
based on the rolling herd average (RHA, average of milk produced for the entire herd in the
last 12 months) by running the model and comparing total milk production with the RHA
target. The model self adjusts to reach the RHA for that specific herd with less than 1% of
error.

The livestock module communicates directly with the feed component to retrieve infor-
mation about dry matter intake and protein amounts and yields its outputs to the modules
that handle the waste in the concentrated areas, the pasture fields, and the waste management
system.

2.3.4. The waste management system module
The waste handling system simulates the N movement through the components of the

flushing system, which is common (with some variants) to all North Florida dairy farms
(Fig. 3C). The flushing system handles the manure deposited on concrete in confined areas.
It consists of water flushing system, storage pond, and an irrigation system. Additionally
there may also be a solids screener and a treatment lagoon. The flushing system uses great
amounts of water to move the manure (feces and urine) deposited on concrete, the storage
pond receives and stores this liquid manure for variable amounts of time, and the irri-
gation system applies it to the crop systems. Both, the solid screener and the treatment
lagoon are designed to separate solids from the flushed manure, the first one by mechanical
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action and the second one by gravity. Both, if present, are located before the storage
pond.

As soon as the manure is deposited on the concrete, variable rates of ammonia will be lost
to the air as volatilization. If solids are screened, the manure that reaches the storage pond
will be a solution with less than 5% solids. Nitrogen in this liquid manure is ammonium and
organic compounds in solution. Extra amounts of ammonia are still lost by volatilization to
the air during the holding time in the storage pond and during spraying application in the
fields. If solids are not screened, the liquid manure will have greater than 5% solids but it is
still sprayed on the fields using high-pressure equipment and an agitator to maintain it as a
liquid. For example, the manure N at the final point of utilization in sprayfields is estimated
using Eq.(2):

Nwf
= (Nw)(VBF)(SC)(VP)(VI)(VS) (2)

where Nwf
is manure N available in the sprayfields; Nw the amount of manure N deposited

in concrete, VBF the fraction of N loss by volatilization before flushing, SC the fraction
of N in the solids collection, VP the fraction of N volatilized in pond, VI the fraction of N
volatilized during irrigation, and VS is the fraction of N lost in the soil after application.

Values vary greatly in different management systems.Van Horn et al. (1998)present an
average system for Florida in which there is an estimated total loss (total N lost, TNL) of
29% of N through the waste system with specific characteristics in all components. These
values are used as default in the model, but ultimately the users must change them to better
mimic their specific conditions. Exporting manure N off the farm is an option that can be
accounted for in the model. However, this practice is very limited in the study area.

The waste management system communicates with the livestock model and with the
crop models. It uses the estimated amounts of N excreted by confined cows and it estimates
monthly N amounts applied to the sprayfields to be used by the crop models.

2.3.5. The forage systems module
The crop models from the decision support systems for agrotechnology transfer (DSSAT,

Jones et al., 2003) use daily climatic information of temperature, irradiation, and precipita-
tion along with soil characteristics, manure effluent applied, and other management choices
to estimate daily biomass accumulation and N leaching for specific crop sequences that are
common in North Florida dairy farm systems. These forage systems are user-defined.

Forage crop simulations were pre-run using and adapting crop models contained in the
DSSAT v4.0. For the soil component, the century model (Parton et al., 1979) implemented
in the DSSAT byGijsman et al. (2002)was used. Specific data for each of the soil types
were converted to the DSSAT v4.0 system using SBuild® software (Uryasev et al., 2003),
where the drained upper limit values were corrected usingSaxton et al. (1986)(Fig. 3D).

Forage crops were calibrated and validated for North Florida dairy farm conditions and all
potential forage combinations were run for all N effluent ranges, ten types of soil found in the
study area (Fig. 3E), and for 43 years of daily weather data (1956–1998). Daily cumulative
N leached (kg ha−1) and biomass (kg ha−1) outputs from the simulations were compiled
in monthly rates for the span of the study period (1956–1998). All months were classified
according to ENSO phases and results were summarized by the factors incorporated in the
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simulations: 12 months× 3 ENSO phases× 4 manure N applications× 10 soil types× 11
forage combinations. A database containing this information was integrated into the main
model, so that real results from crop model simulations can be reproduced for any situation
required. For the case of the manure N application, an interpolation function was used to
cover points that were not used in the original crop model runs. For the pasture fields, a
correction was performed based on the fact that these fields receive direct deposits of manure
and they are not irrigated.

The forage system control allows the user to input data in up to 10 fields. These define
field size, the type of field (spray field or pasture), and the sequence of forage crops. Through
the “soil tab,” the user locates the farm geographically, which determines the type of soils in
which the forage crops will be grown. Additionally the crop models use climatic information
according to the selection of climatic years, which is discussed in following section.

The driver control assures that the crop models communicate with the waste management
module to estimate N leaching and biomass accumulation based on amounts of manure N
either directly deposited to pasture fields or sprayed after treatment in the manure waste
system.

2.3.6. The climatic module
The climatic component allows the user to select the starting year of the simulation and

run the model for a selected number of years. The climatic module assembles the forecast
climatic conditions under which the forage systems will grow. It is a user choice based on a
classification of climatic years based on ENSO in El Niño, La Nĩna, and neutral year events
between 1956 and 1998. Also an average of all 43 years can be selected. After selecting the
run timeline, the user can select the forecast climatic years (Fig. 3F). ENSO phase forecast
are now becoming more identifiable for North Florida conditions several months in advance
(O’Brien et al., 1999; www.coaps.fsu.edu).

The objective is to devise management options that might be more desirable (decreasing
N leaching) according to forecast ENSO phases. It also allows the user to compare the
outcomes among different ENSO phases and average years.

2.3.7. The economic module
The economic module requires current farm economic data. Profitability is estimated

every month and is sensitive to the manure N recycled on-farm and the amount of biomass
produced as feed inside the farm gate. The estimated manure N recycled is converted to
chemical fertilizer in order to estimate its monetary value. As a guide for the user the
economic module shows an average for Florida farms by default published by the DBAP,
www.animal.ufl.edu/dbap/(de Vries et al., 2000). The user can personalize prices and costs
by entering them directly on the menu (Fig. 3G). This module reassembles a monthly balance
of revenues less expenses. Revenues on a dairy farm come from sale of milk, sale of cows,
sale of calf and heifers, gain on purchased livestock, sale of crops, and other revenues.
Expenses are divided onto feed purchase, personnel, milk marketing, crop expenses, and
other expenses.

The value of milk is the product of the milk produced and its market price. More than
90% of the revenue on North Florida dairy farms comes from milk (de Vries et al., 2000);
therefore, the model is highly sensitive to this factor.

http://www.coaps.fsu.edu/
http://www.animal.ufl.edu/dbap/
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2.3.8. The optimization module
Another function incorporated in the DyNoFlo Dairy model is the optimization that is

triggered by a button called “optimize” located in a tab with the same name (Fig. 3H). The
optimization module sets up and automatically solves a linear programming matrix.

The optimization module is a dual linear programming model that maximizes profit (�)
or minimizes N leaching (NL) of multiple scenario simulation runssunder restrictions of
at most averageNL or at least average

∏
, respectively, as defined in Eqs.(3) and(4).

max
∏

=
S∑

s=1

12∑
m=1

∏
ms

· Xms subject to
12∑

m=1

Xms · NL ≤ NL andXms ≥ 0 (3)

min NL =
S∑

s=1

12∑
m=1

NL · Xms subject to
12∑

m=1

Xms ·
∏

ms
≥

∏
andXms ≥ 0 (4)

Xms is the variable defined as the relative fraction of a chosen scenarios in a month
m. A scenario is a set of management practices (i.e., “high” crude protein in diet,
corn–sorghum–winter forage rotation in sprayfields, bahiagrass in pasture fields, and 80%
of confined time). Scenarios in an optimization are formed by combining levels of selected
management practices. Previous livestock, waste, forage, climate, and economic modules
estimate monthly N leaching and profit that are the technical coefficients in the optimization
matrix. NL and

∏
are average N leaching and average profit for all scenarios selected in

an optimization. Optimization is repeated independently for each ENSO phase; therefore,
management strategies are a function of predicted seasonal climate conditions.

3. Model results

3.1. Validation of the DyNoFlo Dairy model and its components

Given the limited number of dairies in the study area (45), statistical validation of the
whole farm DyNoFlo Dairy model was not feasible. Nor it was feasible to validate N leaching
because measurements are not available. However, the crop models, the main component
for estimating N leaching and crop biomass, have been amply validated by previous studies
(Rymph et al., 2004; Jones and Kiniry, 1986; Hunt and Boote, 1998). They were further
calibrated for North Florida conditions using experimental data fromWoodard et al. (2002).

The dynamic livestock and manure handling components were calibrated and validated
with lengthy and detailed interviews with 21 dairy owners. Additionally, these components
were calibrated and validated with three focus groups with extension agents, USDA tech-
nical staff, Florida Department of Environment Personnel, private consultants, and other
members of the Suwannee River Partnership.

Finally, the complete DyNoFlo Dairy model was validated with three diverse dairy farms
(large, medium, and small) in the study area and one focus group with the Suwannee River
Partnership members. In all four of these sessions, additional components of optimization
and feasible adjustments were incorporated and deemed to be satisfactory.
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Table 1
Characteristics of a synthesized North Florida dairy farm

Characteristic Unit Value

TAC Head 400
Bulls Head 16
Heifers % 100
RHA kg year−1 7700
TNL % 29
N volatilized sprayfields % 30
N volatilized pasture % 40
Sprayfields ha 28
Pasture ha 32
Net income US$ Mg milk−1 19.60

Note: TAC, total adult cows; RHA, rolling herd average; TNL, total N lost through the waste management system.

3.2. Analysis of a synthesized Dairy in North Florida

A synthesized farm was created using field data for analyses purposes. Because of the
sensitivity of the N leaching, a “synthesized” farm was ideal for combining many real
characteristics of dairies in the study area without identifying any specific farm for which
the DyNoFlo Dairy model could be run to perform relevant analyses. The synthesized farm
was studied using the simulation and optimization tools of the DyNoFlo Dairy model for
graphical, statistical, and optimization analyses.

The synthesized farm had 400 adult cows, 16 bulls, and raised 100% of its heifers. The
rolling herd average was 7700 kg year−1, and the amount of crude protein in the diet was
“high.” The milking cows spent 80% of their time confined. The total N lost through the
waste management system was 29% (Van Horn et al., 1998) and it was estimated that there
was an extra 30% N volatilized from the soil when applied (Van Horn et al., 2001); the
volatilization by direct deposition in soils was estimated at 40% (Van Horn et al., 2001)
(Table 1). This dairy farm had 28 ha of sprayfields and 32 ha of pasture fields with diverse
forage system rotations as indicated inTable 2.

Table 2
Area, type of fields, and forage rotations in synthesized farm

Field Area (ha) Type Spring Summer Winter

1 4.05 Sprayfield Corn Sorghum Rye
2 8.10 Sprayfield Corn Millet Ryegrass
3 4.05 Sprayfield Sorghum Millet Wheat
4 8.10 Sprayfield Bahiagrass Bahiagrass Oats
5 4.05 Sprayfield Millet Sorghum Rye
6 8.10 Pastureland Bahiagrass Bahiagrass Rye
7 4.05 Pastureland Bermudagrass Bermudagrass Ryegrass
8 8.10 Pastureland Bahiagrass Bahiagrass Wheat
9 4.05 Pastureland Bermudagrass Bermudagrass Oats

10 8.10 Pastureland Bahiagrass Bahiagrass Rye
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3.3. Results of the synthesized North Florida dairy farm

The DyNoFlo Dairy simulation model was run to simulate this synthesized farm, using
the average soil type and the overall net income at US$ 19.6 per Mg of milk produced.
The simulation started in October 2004 and followed three consecutive years, assuming
2004/2005 to be a La Niña year, 2005/2006 a neutral year, and 2006/2007 an El Niño
year.

Nitrogen leaching and profit varied on a yearly basis for different ENSO phases. Overall
N leaching was always lower in La Niña years (6124 kg farm−1 or 101 kg ha−1) than in
neutral years (6% lower) or in El Niño years (13% lower). Profitability was inversely related
to N leaching, La Nĩna years have the highest profitability and El Niño years the lowest
(Fig. 6).

On a monthly basis (Fig. 4), N leaching varied from 68 kg in April for La Niña
years to 2700 kg in January for El Niño years. January and February were the months
with the highest leaching rates (Fig. 4A). January alone was the critical month that
accounted between 30% (La Niña years) and 40% (El Niño years) of overall yearly
N leaching. Accumulated biomass (plant growth) increased, as expected, towards the
summer months (Fig. 4B) when higher temperatures and rainfall determined greater
plant growth. Profitability was highest between the months of April and July (maximum
in May for La Niña years) because of higher N recycled or higher biomass accumu-
lation.

Fig. 4. Monthly estimations for synthesized small North Florida dairy farm: (A) N leaching; (B) biomass accu-
mulation; (C) profit.
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Table 3
Combination of environment characteristics and management strategies simulated by the DyNoFlo Dairy model
for the sensitivity analysis

Environment/Management Code Value

Soil types 1 Arredondo–gainesville–millhopper
2 Arredondo–jonesville–lake
3 Bonneau–blanton–eunola
4 Penney–otela
5 Penney–kershaw
6 Millhopper–bonneau
7 Otela–jonesville–seaboard
8 Blanton (high)–lakeland
9 Blanton (low)

10 Blanton–ortega–penny

ENSO phases 1 La Niña
2 Neutral
3 El Niño

Confined time (CT) 1 80%

Forages pasture (pasture) 1 Bahiagrass–bahiagrass–winter forage
2 Bermudagrass–bermudagrass–winter forage

Forages sprayfields (fields) 1 Bahiagrass–bahiagrass–winter forage
2 Corn–bermudagrass–winter forage
3 Corn–bahiagrass–winter forage
4 Corn–millet–winter forage
5 Corn–corn–winter forage
6 Millet–sorghum–winter forage
7 Sorghum–corn–winter forage
8 Millet–corn–winter forage
9 Corn–sorghum–winter forage

10 Bermudagrass–bermudagrass–winter forage

Crude protein (CP) 1 Low
2 High

3.4. Sensitivity analysis

The DyNoFlo Dairy model was run for the synthesized farm and various potential
environmental and managerial options as scenarios that could impact N leaching and prof-
itability. Scenarios were created by combinations of the 10 North Florida dairy farm soil
types, three ENSO phases (La Niña, Neutral, and El Niño climatic years), two levels of
confined time (CT, 80 and 60%), two combinations of forage sequences in pasture, 10 com-
binations of forage sequences in sprayfields, and two levels of protein in the diet (“low”
and “high”) (Table 3).

Fig. 5 compares the yearly N leaching and profitability of selected factors. Circles in
Fig. 5represent managerial or environmental conditions represented by the numbers inside
them.

Nitrogen leaching was higher and profit was lower consistently for El Niño years and the
opposite for La Nĩna years (Fig. 5). Fig. 5A illustrates N leaching and profitability for the 10
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Fig. 5. Overall farm N leaching and profit when confined time is 80% and crude protein in diet is “high.” (A)
Soil series of the study area when the pasture and sprayfields are planted with bermudagrass. (B) Crop systems in
sprayfield during spring and summer when soil is type 4 (Penney–Otella) and pasture is bahiagrass.

soil types in the study area. Soils of type 6 (Millhopper–Bonneau) were those that leached
the most, but with a medium–low profit level. Soils of type 3 (Bonneau–Blanton–Eunola)
were the second highest in N leaching and those with the lowest net return.

Soil of types 6 and 3 are very sandy and with very low water holding capacity; soil
type 6 is the shallowest and probably because of that the highest N leaching. This fact,
however, was favorable for plant growth. Therefore, profitability was not as low as with soil
type 3.
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Fig. 5B displays the relationships among 10 different crop systems for spring–summer to
summer–fall in the sprayfields. Rotation consisting of bermudagrass–bermudagrass outper-
formed the others with the least N leaching and medium–low profitability. It is followed by
system of corn–bermudagrass, which had medium-to-high profitability. Rotation consisting
of bahiagrass–bahiagrass had low–medium N leaching, but the lowest profitability of all.
The most profitable crop system was rotation millet–corn, but with a medium to high level
of N leaching.

A decrease in the amounts of N leaching was observed when the crude protein in the diet
changed from “high” to “low” in the order of 10% with a negligible increase in profit (figures
not shown). Similarly, N leaching decreased in the order of 7% with a negligible increase in
profit when the confined time of the milking cows on the synthesized was changed from 80
to 60%. Impacts in changes in crude protein and confined time vary depending upon other
specific farm conditions such as the area of sprayfields and pastures, the manure handling
system specifications, and the number of cows.

3.5. Optimization of the synthesized farm

The linear programming optimizer of the DyNoFlo Dairy model included combinations
of the following management options: confined time (CT), crude protein (CP), pasture forage
rotations, and sprayfield forage sequences in the synthesized farm. The optimizer found a
set of management practices with better characteristics of lower N leaching and higher profit
when compared with the baseline situation of the farm. The selected management options
are summarized inTable 4and results compared with the original situation are presented
in Fig. 6.

The management strategies selected by the optimizer were a “low” CP level; a variable
level of CT, 60% of CT for cows that will use 59% of the pasture and 80% of CT for cows
that use 41% of the pasture; a bermudagrass–bermudagrass–winter forage sequence for all

Fig. 6. Comparison of N leaching and profit of current, optimized and feasible practices of the synthesized North
Florida dairy farm for different ENSO phases.
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Table 4
Management strategies selected by the optimizer

Management Selected level

CP Low

CT 60% 59% of the pasture
80% 41% of the pasture

Pasture Bermudagrass–bermudagrass–winter forage

Sprayfields ha
La Niña 9.19 Corn–corn–winter forage

6.25 Bermudagrass–bermudagrass–winter forage
5.47 Corn–bermudagrass–winter forage
3.87 Millet–corn–winter forage
3.54 Corn–bermudagrass–winter forage

Neutral 8.46 Corn–corn–winter forage
6.77 Bermudagrass–bermudagrass–winter forage
4.95 Corn–bermudagrass–winter forage
4.54 Millet–corn–winter forage
3.61 Corn–bermudagrass–winter forage

El Niño 8.71 Corn–corn–winter forage
6.46 Bermudagrass–bermudagrass–winter forage
5.26 Corn–bermudagrass–winter forage
4.53 Millet–corn–winter forage
3.37 Corn–bermudagrass–winter forage

Note: CP, crude protein; CT, confined time.

pasture land and variable areas of forages for sprayfields for different ENSO phases, as seen
in Table 4.

With these combinations, the optimizer estimated that N leaching would vary from
4603 kg year−1 for a La Niña year to 5215 kg year−1 for an El Niño year. An intermediate
figure of 4916 kg year−1 was the outcome for a neutral year.

Comparing these values with the previous results of the farm “as is,” substantial variations
were noticed. N leaching could be decreased up to 25% and profit could still be increased
by approximately 3.15%, in all ENSO phases.

3.6. Feasible practices for the synthesized farm

In reality, farmers cannot change all practices proposed by the optimizer. For instance,
slight changes in area of sprayfields may not be feasible. However, dairy farmers usually
would be able to change some of the proposed practices. The optimization results serve
as guidelines for making such changes, taking into account that these optimization results
would present better environmental outputs. By cross-referencing results achieved by the
optimizer with the farmer-proposed practices, changes that are “feasible” for farmers can
be determined.

The optimization proposed a decrease in CP in the diet from “high” to “low.” This is a
feasible change for a dairy farmer to make. Next, the optimization proposed to switch the
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Table 5
Feasible crop systems in synthesized dairy farm

Field Area (ha) Type Spring Summer Winter

1 9.31 Sprayfield Corn Corn Rye
2 6.07 Sprayfield Bermudagrass Bermudagrass Ryegrass
3 5.67 Sprayfield Corn Bermudagrass Wheat
4 7.69 Sprayfield Corn Corn Oats
5 32.37 Pasture Bermudagrass Bermudagrass Oats

CT between 80 and 60% for different groups of cows. If the farmer found it difficult to
implement this specific change, CT levels would remain at 80%. Finally, the optimization
proposed a series of crops for different ENSO phases. The farmer may prefer similar, though
not identical crop changes suggested by the optimization. Feasible crop systems for the farm
are shown inTable 5. This implemented bermudagrass instead of bahiagrass in pastures and
sprayfields, and includes more in corn than sorghum and millet in sprayfields. Feasibility
of management adjustments were determined through interaction with dairy farmers and
other stakeholders.

With these “feasible” combinations the DyNoFlo Dairy simulation was rerun. Results
estimated that the N leaching would vary from 4722 kg year−1 for a La Niña year
to 5361 kg year−1 for an El Niño year. A neutral year would result in N leaching of
5048 kg year−1. Comparing these N leaching values with the original, farm “as is” N leach-
ing could be reduced by approximately 23% in all ENSO phases, and the profit could still
increase by 2.5% (Fig. 6).

4. Conclusions

Although many simulation models in different parts of the world dealing with the issue
of N leaching on dairy farms already exist (Topp and McGechan, 2003; Rotz et al., 2002;
Kuipers and Mandersloot, 1999; Berentsen and Giesen, 1994) the DyNoFlo Dairy model
adds novel aspects with the combined interaction of Markov-chain flow of cows, climatic
differentiation of ENSO phases, profitability linked to N leaching and N utilization, and
dual optimization of N leaching and profitability.

For established dairies attempting to reduce N leaching and maintain an adequate profit
level, a large number of cows exist in a fixed area, so only relatively small changes in number
of animals are possible. Given that land area and soil type are fixed, and confined time is
not very flexible, the most critical factor for reducing N leaching without impacting profit
is selection of crop rotations on sprayfields and pastures. The best pasture is bermudagrass.
Sprayfields should be planted to bermudagrass as well, and then strip planted in the sod with
corn. In the winter, both sprayfields and pastures should be planted with a very dense over
seeding of mixed winter forages (oats, wheat, rye, ryegrass). Changing from the “high” to the
“low” crude protein in diet can substantially decrease the N flows mostly to the sprayfields. In
addition to these longer term adjustments, when El Niño years are forecast, the most feasible
seasonal adjustments are: (1) a heavier voluntary culling rate to reduce the number of cows;
(2) export manure; and/or (3) rent additional pasture land and decrease confined time.
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The DyNoFlo Dairy model has even greater potential to reduce N leaching when design-
ing new dairies rather than making adjustments to existing dairies.
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