

Sexed Semen in Dairy Farming

Victor E. Cabrera University of Wisconsin-Madison

Why to use sexed semen?

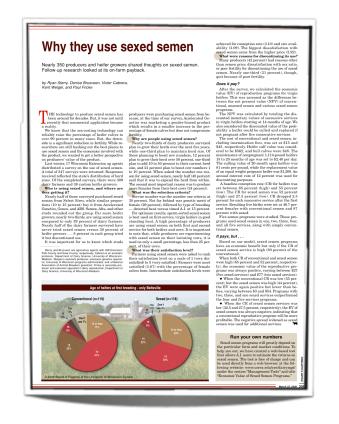
Use of sexed semen could be economically attractive

Increases desired gender More valuable offspring

Decreases fertility Compromised efficacy of sex-sorted semen

More expensive Technology is costly

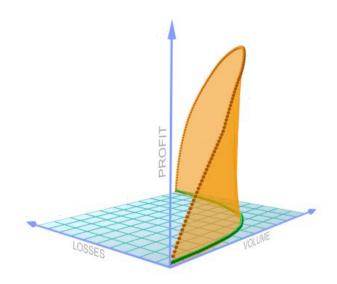
Decision should be economic



What's going on in Wisconsin

Sexed semen on dairy farms

Usual recommendation On virgin heifers



Survey in Wisconsin

Farmers are using it on heifers in 1st and 2nd services

Objectives

Assess the economic value of using sexed-semen

Define bio-economic parameters

Very important to include all the right variables in the model

Illustrate metodology Solid calculation

Demonstrate user-friendly application

Online decision support system openly and freely available to you!

Discuss results Baseline and alternative scenarios

Methodology

Partial budgeting

Additional revenues

Gender-selected calves

Additional expenses

Sex-sorted semen

Costs savings

Dystocia cost

Revenues foregone

- Lower conception rate
- Days open

Methodology

Expected Value

Fair comparison Net Present Value (using a discounting rate)

Assumptions

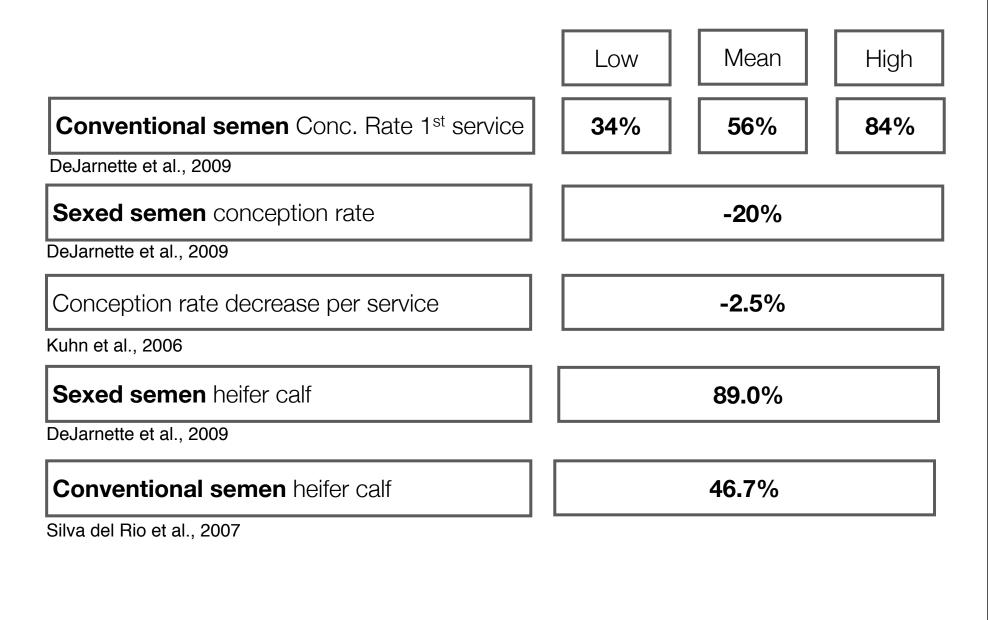
Similar for sexed and conventional semen

Starting of reproductive program At 14 months of age

Breeding attempts

Five services Non-pregnant are replaced

Experimental Design


Three fertility levels in each: low, mean, high

Control and treatments studied

Treatment	1 st Service	2 nd Service	3 rd Service	4 th Service	5 th Service
Control	CS	CS	CS	CS	CS
TRT 1	SX	CS	CS	CS	CS
TRT 2	SX	SX	CS	CS	CS
TRT 3	SX	SX	SX	CS	CS
TRT 4	SX	SX	SX	SX	CS
TRT 5	SX	SX	SX	SX	SX

Baseline inputs

Holstein reproductive parameters

Baseline inputs

Economic parameters

Conventional semen cost	\$15
Dlynk and Wolf, 2007	
Sexed semen cost	\$45
Olynk and Wolf, 2007	
Heifer calf value	\$562
Wisc. USDA Market Reprot, 2008	
Bull calf value	\$48
Wisc. USDA Market Reprot, 2008	
Dystocia cost per case	\$28.53
Dematawewa and Berger, 1997	
Dystocia incidence in bull calves	1.57 times higher
Martinez et al., 1983	

Other inputs

Economic and productive parameters

Heifer maintenance 15-20 mo	\$2.4/d
Zwald et al., 2007	
Weight 20-mo non-pregnant	505 kg
NRC, 2001	
Salvage 20 mo non-pregnant	\$1.79/kg
Wisc. USDA Market Report, 2008	
Value 20-mo pregnant heifer	\$1,200
Wisc. USDA Market Report, 2008	
Interest rate	12%/yr

Analyses Baseline comparisons

EV baseline conditions

Treatment with higher EV

Sensitivity analysis Find the most important variables

Break-even analysis

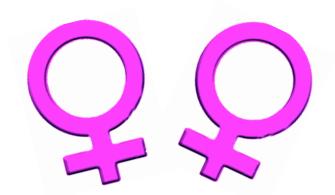
Conception rate required for a positive expected value

Scenario analysis Find optimal treatments

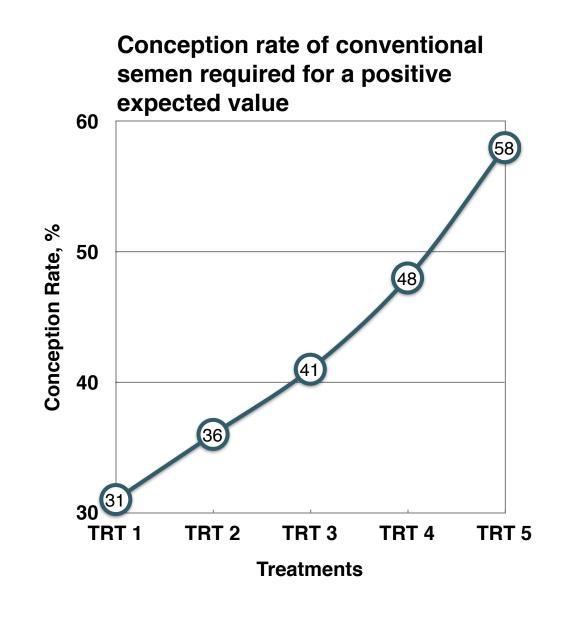
Baseline parameters

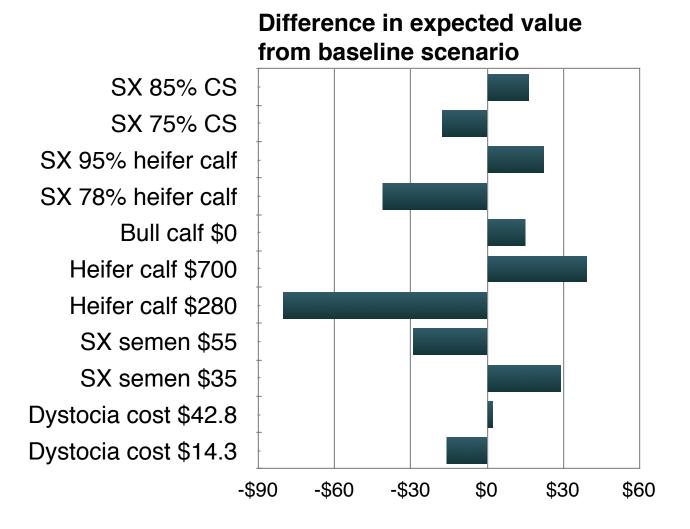
Economic Value (EV, \$/heifer) of sexed semen treatments

Treatment	CS CR 34%	CS CR 56%	CS CR 83%	
TRT 1: 1 SX	6.5	49.3	100.0	
TRT 2: 2 SX	-3.4	57.8	111.6	
TRT 3: 3 SX	-23.1	46.4	96.1	
TRT 4: 4 SX	-48.9	24.7	71.7	
TRT 5: 5 SX	-78.5	-2.7	43.9	


Cabrera, 2009

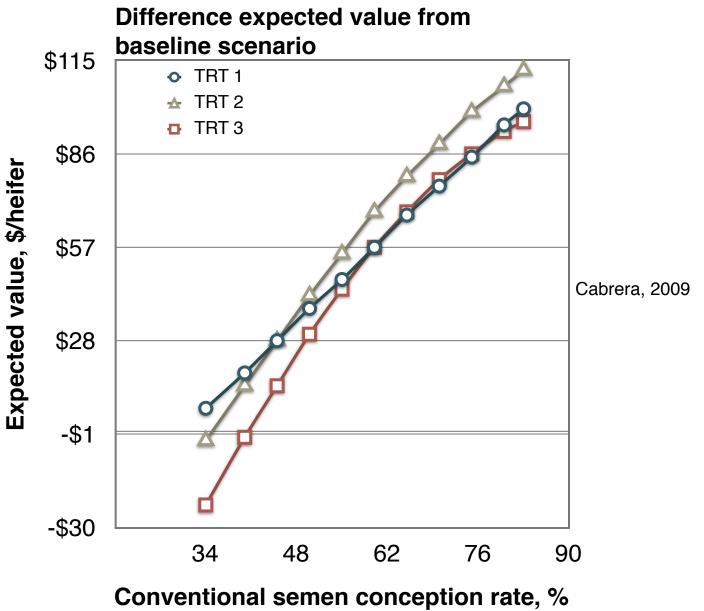
Baseline parameters


Overall EV \$30.1/heifer


When to use sexed semen? Always justified for 1st service

Break-even analysis

Sensitivity analysis


Results Optimal treatment

Optimal decision (treatment) to different scenarios

Scenario	CS CR 34%	CS CR 56%	CS CR 83%
Sexed semen 85% of CS	1	2	2
Sexed semen 75% of CS	None	2	2
Sexed semen 95% heifer calf	1	2	2
Sexed semen 78% heifer calf	None	1	1
Bull calf \$0	1	2	2
Heifer calf \$700	1	2	2
Heifer calf \$280	None	None	1
Dystocia cost \$42.8	1	2	2
Dystocia cost \$14.3	1	2	2

Cabrera, 2009

Optimal treatment

Other impacts

Sensitivity to other variables

Difference in expected value to variable changes	Impact		
Variable	For every \$ change	EV \$ changed	
Heifer maintenance cost, \$/d	+0.1	-1.0	
Salvage value, \$/kg	+0.1	-1.0	
Pregnant heifer value, \$/heifer	+100	-2.8	
Dystocia cost, \$/heifer	+10	+1.44	
SX semen cost, \$/service	+5	-14.5	
Discount rate, %	+10%	-0.1	

Cabrera, 2009

Conclusions Main take-home messages

Sexed semen has higher economic value than conventional semen Under the baseline and scenarios studied here

Single most important variable: Conception rate • 31 to 44% CR: 1 service • > 44% CR: 2 services

Other important variables:

Conception rate sexed semen, % heifer calf, heifer calf value, cost sexed semen

Additional variables:

Will only have limited impact in the decision of using sexed semen

Discussion

Additional considerations when using sexed semen

Exist some evidence of:

- Greater incidence of stillbirths
- Longer gestation periods

Implications for farm herd expansion

Implications for US herd expansion

Faster genetic improvement

Decreased bio-security risks

Decision support system

Perform your own calculations

Results might not apply equally to all farms

Every farm is different

Market conditions change permanently Might impact decisions

Challenge is to provide a user-friendly application Easy to use, still robust

Economic value of sexed semen

Ready for you to use

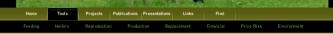
. Conception Rates			Instructions	
L.a. Conventional Seme		b. Sexed Semen CR	Manage Scenario	s
Low CR 34	· (%			-
Average CR 56	- R	80 🔺	Print	
High CR 83	÷		DairyMGT Webpag	ge
2. Expected	3. Semen Cost (\$)	4. Other Economic Para	meters	
			Raising Cost (\$/d)	
Conventional 46.7	Conventional 15	•	Salvage Value (\$/cwt)	
	Sexed 45	▲ remaie can (\$) 502	 Dystocia Cost (\$/heifer) 	28.53
Sexed 89	Sexed	Male Calf (\$) 48	20-mo Pregnant Heifer (\$)	
\$150.00				
\$50.00				Overall EV (\$
\$150.00 \$100.00 \$50.00 (\$50.00) (\$100.00)				
Conventional CR:	34%	56%	83%	
Sexed Semen CR:	27.2%	44.8%	66.4%	
Sexed Semen CR:	27.2%	44.8%	66.4%	
Conventional CR:	3430	26%	83%	
(\$100.00)				

Economic value of sexed semen

• 1

Where to find it

DairyMGT.info


Dairy Management

Dairy Management site is designed to support dairy farming decision-making focusing on model-based scientific research. The ultimate goal is to provide user-friendly computerized decision support systems to help dairy farms improve their economic performance. Dr. Victor Cabrera focuses on model-based decision support in dairy cattle and in dairy farms production systems. Dr. Cabrera's primary interest is to improve costefficiency and profitability along with environmental stewardship in dairy farms by using simulation techniques, artificial intelligence, and expert systems. Dr. Cabrera's research and Extension programs involve interdisciplinary and participatory approaches towards the creation of userfindly decision support systems. As an Extension Specialist, Dr. Cabrera works in close relationships with county-based Extension faculty, dairy producers, consultants, and related industry.

Tools

Management Tools

A collection of state-of-the-art dairy management tool that are: user-friendly, interactive, robust, visually attractive, and self contained. All these tools have clear or self-explanatory instructions and technical support available.

Click on the Tool title to learn more.

Feeding

Orouping Strategies for Feeding Lactating Dairy Cattle
 Optigen® Evaluator
 Income Over Feed Supplement Cost
 Dairy Extension Feed Cost Evaluator
 Com Feeding Strategies
 Income Over Feed Cost
 Dairy Ration Feed Addtws Break-Even Analysis

Heifers

Cost-Benefit of Accelerated Liquid Feeding Program for Dairy Calves
 Economic Value of Sexed Semen Programs for Dairy Heifers
 Heifer Replacement
 Heifer Real-Even

Reproduction

Economic Value of Sexed Semen Programs for Dairy Heifers
 UW-DairyRepro5: A Reproductive Economic Analysis Tool
 Exploring Timing of Pregnancy Impact on Income Over Feed Cost
 Dairy Reproductive Economic Analysis

9 Courses Visio & Examplement Properties for Easy Parties 9 UNE Enclosures & Reproductive Economic Resignation 9 Exploring Torong of Programmy Impact on Income Deer Fault

aproduction

Adjust tool to local and current conditions

Data to analyze alternatives of sexed semen use in dairy farms in Texas¹

	Conventional	Angus	Semen	Holstein semen		
	semen	75%	90%	75%	90%	
Heifer CR ² , %	65	55	55	55	55	
Cow CR, %	34	24	24	24	24	
Cow PR ³ , %	17	12	12	12	12	
Bull calves, %	50	75	90	25	10	
Price semen, \$/unit	18	12	25	20	25	
Bull calf value, \$		260	260	160	160	
Heifer calf value, \$		260	260	250	250	

¹Courtesy of Jorge Melchor, CRI Texas, April 2012

 2 CR = Conception rate

³PR = Pregnancy rate assuming 50% heat detection rate or 42 days of interbreeding interval for synchronization programs

Adjust tool to local and current conditions

Additional information

	Conventional semen
Heifer raising cost, \$/day	2.0
Salvage value, \$/cwt	120
20-mo pregnant heifer	1000
Dystocia cost, \$/heifer	30
Discount, %/year	10

Adjust tool to local and current conditions

Results for heifers

	Angus Semen		Holstei	n semen
Treatment	75% 90%*		75%	90%
TRT 1: 1 SX	-5.6	-19.4	2.6	6.1
TRT 2: 2 SX	-4.6	-31.6	2.6	4.8
TRT 3: 3 SX	-0.8	-40.6	1.9	0.9
TRT 4: 4 SX	4.3	-48	1.1	-4
TRT 5: 5 SX	10.2	-54.6	0.3	-9.1

*It would become positive if:

the sexed semen cost is \$13 or lower, or

the value of a bull calf is \$100 greater than the value of a heifer calf

Adjust tool to local and current conditions

Results for cows

	Angus Semen 75% 90%*		Holstei	n semen
			75%	90%
A. Loss because decrease in PR ¹ , \$/year	63	63	63	63
B. More expense in semen ² , \$/year	-25	29	8	29
C. Additional value of female calf ³ , \$/year	0	0	83	83
Economic balance (C-A-B), \$/cow per year	-38	-92	12	-9
Minimum conception rate required, %	28	40	23	27
Sexed semen cost to break-even, \$	3	3	24	23

¹Calculated using the tool "The Economic Value of a Dairy Cow" at DairyMGT.info: Tools. ²At 24% conception rate, 4.17 services/cow are needed

³Assuming a 13 month calving interval

