Move, Keep or Cull Her: Tools for Grouping & Culling Decisions

Part 2: Grouping Strategies for Feeding Lactating Dairy Cattle

V.E. Cabrera

University of Wisconsin-Madison

What seems to be the problem?

Dairy farmers might be over-feeding lactating cows

Same ration in a group

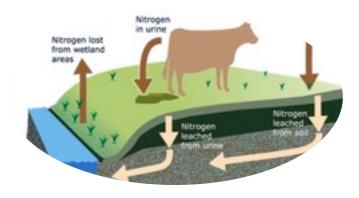
No feeding groups or only a few groups

Preferred "higher" rations Low producing animals

receive more nutrients than required

What could be a possible solution?

Consider additional feeding groups for lactating cows

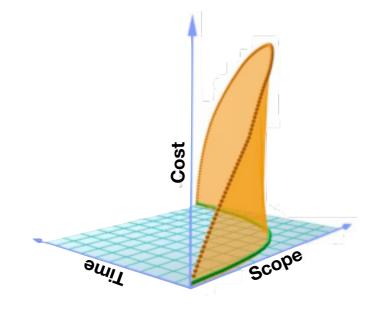


Improved nutrient use efficiency Diet closer to cow requirements

Less overfed animals Decreased overweighted

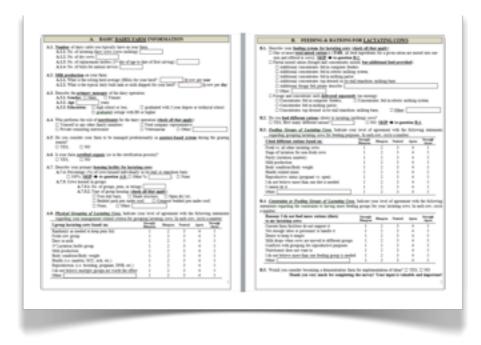
cows

Less nutrient excretion Decreased environmental concerns



Lower feeding costs Higher milk income over feed cost

Why dairy farmers do not group more?


There could be a myriad of reasons!

Farm facilities or equipment limitations Physical constraints

Not enough labor or personnel Labor constraints Not enough expertise or knowledge available Management constraints

Other reasons Trying to find them

Strategies for grouping lactating cows

Depend on farm and herd characteristics

Individual cow nutrient requirements

- Energy
- Protein

Number of lactating cows on the herd

Farm characteristics Capacity to handle lactating feeding groups

Adapted from McGilliard et al., 1983; St-Pierre and Thraen, 1999

Cow nutrient requirement

Energy

Total net energy (NEtotal)

Energy required for maintenance + energy required for milk production

NE_{total} (Mcal) = NE_{maintenance} + NE_{milk}

NE_{maintenance} Function of animal body weight

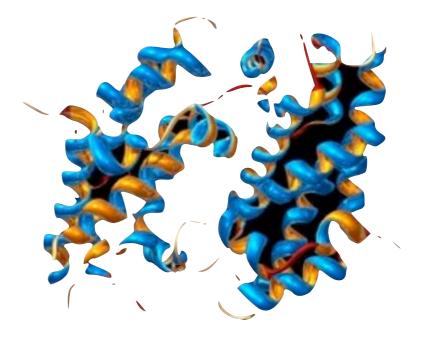
NE_{maintenance} = 0.079 x *BW*^{0.75}

NE_{milk} Function of milk and fat production

NE_{milk} = Milk x (0.36 + 0.0969 x Fat%)

Cow nutrient requirement

Protein


Total crude protein (CP_{total})

Protein required for maintenance + protein required for milk production

CP_{total} (g) = **CP**_{maintenance} + **CP**_{milk}

CP_{maintenance} Function of animal body weight

 $CP_{maintenance} = 104.78 + 0.73 \times BW$ - 0.00015432 x BW²

CP_{milk} Function of milk and fat production

CP_{milk} = Milk x (4586+1036 x Fat%)

McGilliard et al., 1983

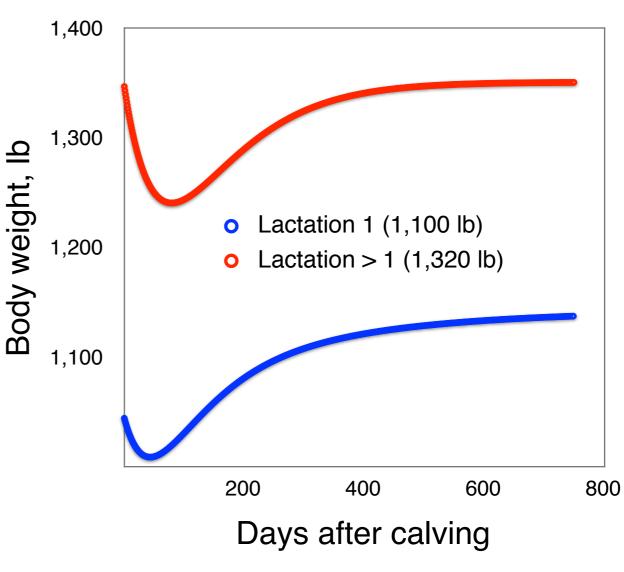
Cow nutrient requirement

Dry matter intake

Total dry matter intake (DMI) Function of DIM, BW, and 4% fat corrected milk (4% FCM)

 $DMI (kg) = (0.372 \times 4\% FCM + 0.0968 \times BW^{0.75}) \times (1 - e^{(-0.192 \times ((DIM/7) + 3.67))})$

4% FCM = 0.4 x Milk + 15 x (Fat%/100) x Milk


Cow body weight

Measurements are not always available

Estimation based on

- Lactation
- DIM
- Cohorts' average BW

Korver et al., 1985 function fitted to NRC, 2001

Nutrient requirement for a group of cows Energy and protein

Lead factor Multiplicative factor to adjust nutrient requirements of a group

NEgroup (Mcal) = 83rd Percentile (NEgroup_cows)

CPgroup (%) = 83rd **Percentile** (**CP**group_cows)

Stallings and McGilliard, 1984

Number of groups for lactating cows

Optimal maximum number of feeding groups

Farm characteristics

- Facilities
- Equipment
- Management
- Labor

Previous findings

- Published reports
- Empirical analyses

Number of groups

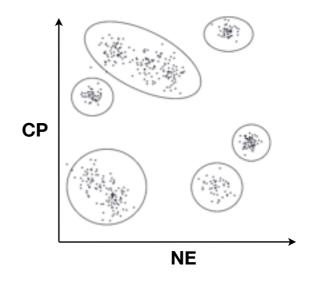
• 1, 2, 3, or 4 groups

McGilliard et al., 1983; St-Pierre and Thraen, 1999

Criteria for grouping

Several criteria exist

Days after calving (DIM) Based on stage of



Fat corrected milk

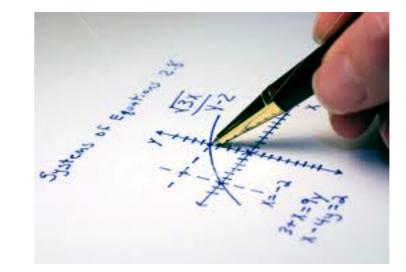
Based on level of production measured as FCM Dairy merit Function of both FCM and BW

Cluster

Function of NE and CP. Seems to be most efficient criterion.

McGilliard et al., 1983; St-Pierre and Thraen, 1999

Calculate the value of NE and CP

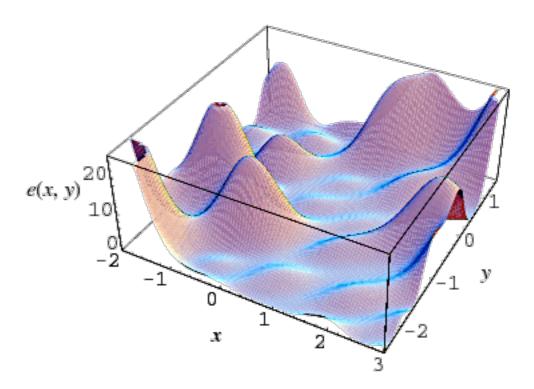

Determine diets' cost

Value of NE and CP could be deducted Using referee feeds Price NE and CP Nutrient values NE (\$/Mcal) and CP (\$/kg)

Corn %CP + Corn Mcal NE = \$/kg Corn Price

SBM %CP + SBM Mcal NE = \$/kg SBM Price

Value of NE and CP could be available on a farm Based on farm experience



Optimize cows belonging to a feeding group

Maximize the income over feed cost

Non-linear optimization

- Iterative process
- Search for global maxima IOFC

Max(IOFC) = SUM(IOFC_{group})

*IOFC*_{group} = *Milk Value - Feed Cost*

Milk Value = SUM (Milkcow) x Milk Price

Feed Cost = SUM (DM_{cow}) x 83% CP x CP price + SUM (DM_{cow}) x 83% NEI x NEI price

Additional costs and benefits

Impacts grouping feeding strategies

Management cost

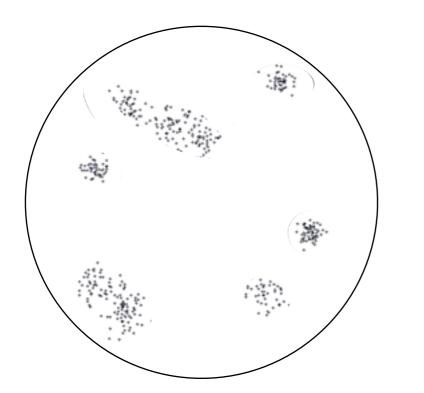
- Additional labor
- Extra management

Milk depression

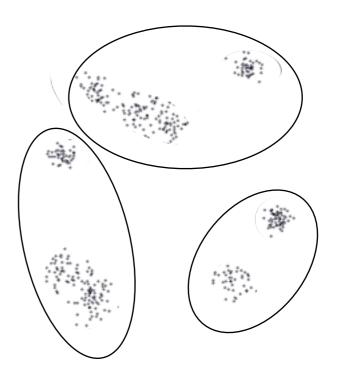
- Cow social interactions
- Diet changes

Avoid costs

Additives savings


Overall net return

Bottom line grouping strategies


Net return

- + Max (IOFC)
- Extra management
- Milk depression
- + Savings

VS

Decision support system

Perform your own calculations

Group feeding strategies are farm specific

Every farm is different

Herd demographics changes dynamically Re-grouping is permanent

Market conditions change permanently Might impact decisions

User-friendly application Easy to use, still robust

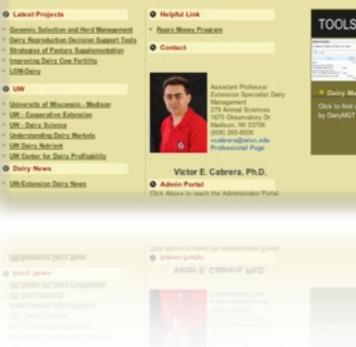
Grouping strategies

For feeding lactating dairy cattle

Dairy Management UW-Extension University of Wisconsin-Madison Wisconsin Made and Low Made and Low Home Tools Projects Publications LGM-Dairy Links About Contact Comments News People Opportunities Gallery	
Grouping Strategies for Feeding Lactating Dairy Cattle Overview Upload Farm Details Group Cows Reap Benefits Sample Farm: Total Cows = 47	0
Prices CP% Nel, MCal/lb \$/(Unit) Corn 0.1 0.9 6.72 (\$/bu) Soybean Meal 0.5 0.88 350 (\$/ton) Please note that the values highlighted with this color will be used by the tool. Calculated Values	
\$/Ib CP 0.14337 Edit \$/Mcal NEL 0.1174 Edit Milk Price: 15.89 (\$/cwt)	
Download Parameter Excel File Download Parameters File	
Upload Parameters as Excel File Upload the Excel File: Choose File No file chosen	
Current File/Data Status Using Data from Default Parameters File on Server	

Feeding grouping strategies

Where to find it


DairyMGT.info

Dairy Management

O UW

Dairy Management site is designed to support dairy farming decision-making focusing on model-based scientific research. The ultimate goal is to provide user-friendly computerized decision support systems to help dairy fams improve their economic performance. Dr. Victor Catherin focuses on model-based decision support in dairy cattle and in dairy farm production systems. Dr. Cabrera's primary interest is to improve costefficiency and profitability along with environmental stewardship in dairy farms by using simulation techniques, artificial intelligence, and expert systems. Dr. Cabreta's research and Extension programs involve interdisciplinary and participatory approaches towards the creation of userhiendly decision support systems. As an Extension Specialist, Dr. Cabrera works in close relationships with county-based Extension faculty dairy producers, consultants, and related industry,

Toda Projecta Publications Presentations Links Find

Management Tools

A collection of state-of-the-art dairy management lool that are: user-friendly, interactive, nobust, visually attractive, and self contained. All these tools have clear or self-explanatory instructions and technical support available.

Click on the Tool title to learn more.

Feeding

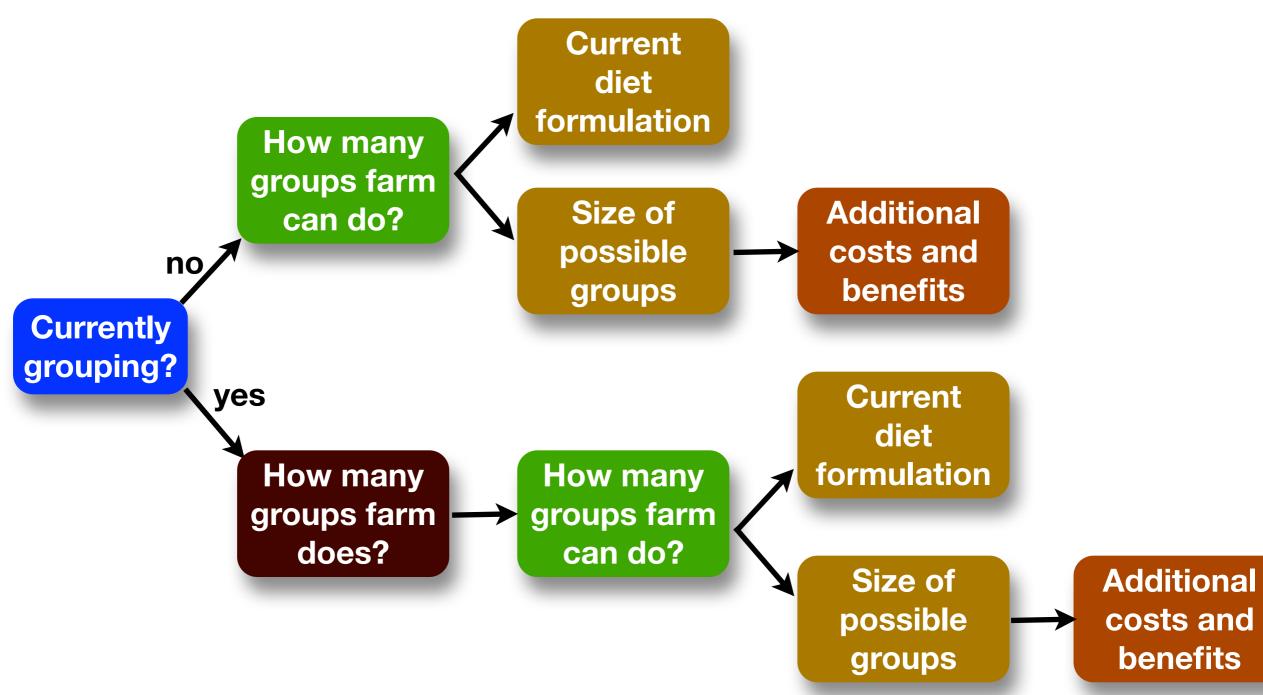
O Grouping Strategies for Feeding Lectating Daily Cattle Optigen@Evaluator Income Over Feed Supplement Cost O Dairy Extension Feed Cost Evaluator O Com Feeding Strategies O Income Over Feed Cost O Dairy Ration Feed Additive Break-Even Analysis

Helfers

Cost-Benefit of Accelerated Liquid Feeding Program for Dairy Calves @ Economic Value of Sexed Semen Programs for Daily Helfers O Halfer Replacement O Helfer Break-Even

Reproduction

O Economic Value of Sexed Semen Programs for Dairy Hellers O UN DairyReprol: A Reproductive Economic Analysis Tool O Exploring Timing of Pregnancy Impact on Income Over Feed Cost O Daity Reproductive Economic Analysis


Desiduation

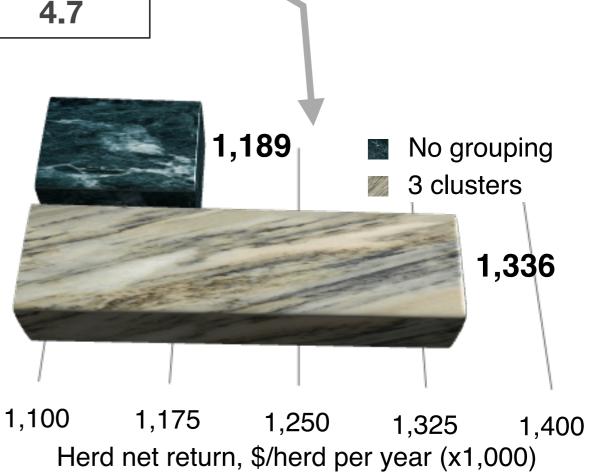
Bagkaing Tening at Pergnancy Impact on Income Over Field Cost
 Dairy Reproductive Economic Analysis

Grouping strategies

Farm possibilities

Decision support system illustration

Economic impact of grouping


	Current situation		
Lactating cows	470		
Number groups	None	ļ P	
NE, Mcal/lb	0.80		
CP, %	17%		

	Possible situation	
Number groups	3	
Group sizes	100, 100, 270	
Added cost, \$	\$1,000/month	
Milk loss	5 lb/cow	
Milk loss time	4 days	
Saved cost, \$	\$0	

Decision support system illustration

Cluster grouping criteria

	Possible situation				
	Cow numbers	NE, Mcal/lb	CP, %	IOFC, \$/cow/day	
Group 1	270	0.71	16.05	9.3	
Group 2	100	0.65	14.18	7.2	
Group 3	100	0.62	13.07	4.7	

Analysis from dairy farm records

30 Wisconsin dairy farms

No grouping vs. 3 groups

Same size groups

Same prices for all

- \$15.89/cwt milk
- \$0.14337/lb CP
- \$0.1174/Mcal NEI

Projected body weight

- 1,100 lb primiparous
- 1,300 lb multiparous

Cluster grouping

 83rd percentile CP and NEI

Analysis from dairy farm records

30 Wisconsin dairy farms

	Number of lactating cows (n=30)	Income over Feed Cost (no grouping)	Income over Feed Cost (3 groups)	
		\$/cow per year		
Mean	788	\$2,311	\$2,707	
Minimum	< 200	\$697	\$1,059	
Maximum	> 1,000	\$2,967	\$3,285	

Increase of IOFC (\$/cow per year)

- Between 7 and 52%
- Mean = \$396
- Range = \$161 to \$580

After reasonable extra costs

• Still increased net margin of between 5 and 47%

Analysis with dairy farmers input

2 dairy farms

Farm 1

- Current: 3 groups using DIM
- Proposed: 4 cluster groups

Additional net return:

\$106/cow per year

Farm 2

- Current: 4 groups using lactation and breeding
- Proposed: 4 additional groups

Additional net return:

- Not determined yet: additional analysis required
- Preliminary data show potential

Acknowledgement

Project support

This project is supported by Agriculture and Food Research Initiative Competitive Grant No. 2011-68004-30340 from the USDA National Institute of Food and Agriculture

United States Department of Agriculture National Institute of Food and Agriculture

