

Integrated Dairy Farm Economic and Environmental Assessment of Management Strategies

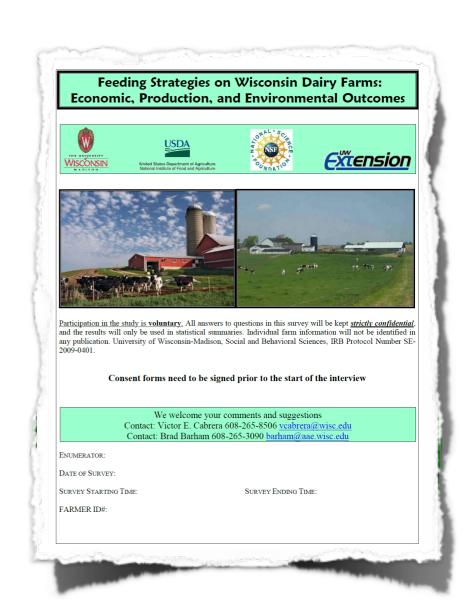
V.E. Cabrera, M. Dutreuil, C. Hardie University of Wisconsin

Objectives

 Characterize Wisconsin organic, grazing, and conventional (alike) dairy farm systems

- 2. Perform whole dairy farm integrated evaluations
- 3. Find best management practices that concurrently increase profit and decrease environmental impacts

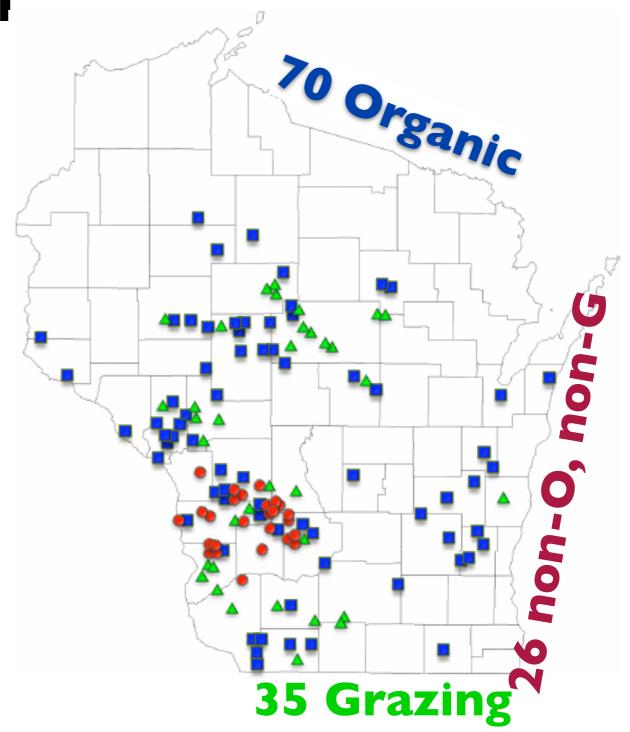
Materials and Methods


- I. Collect comprehensive dairy farm information
- 2. Analyze, synthesize, and adjust data collected

3. Apply the Integrated Farm System Model (IFSM)

The Survey

9 Sections


- Farm business structure and decision makers
- 2) People working on the farm
- 3) Dairy herd and management
- 4) Feeding management
- 5) Pasture management
- Land management and cropping operation
- 7) Manure and nutrient management
- 8) Economic information; and
- Assessment of farm management and satisfaction.

Sample

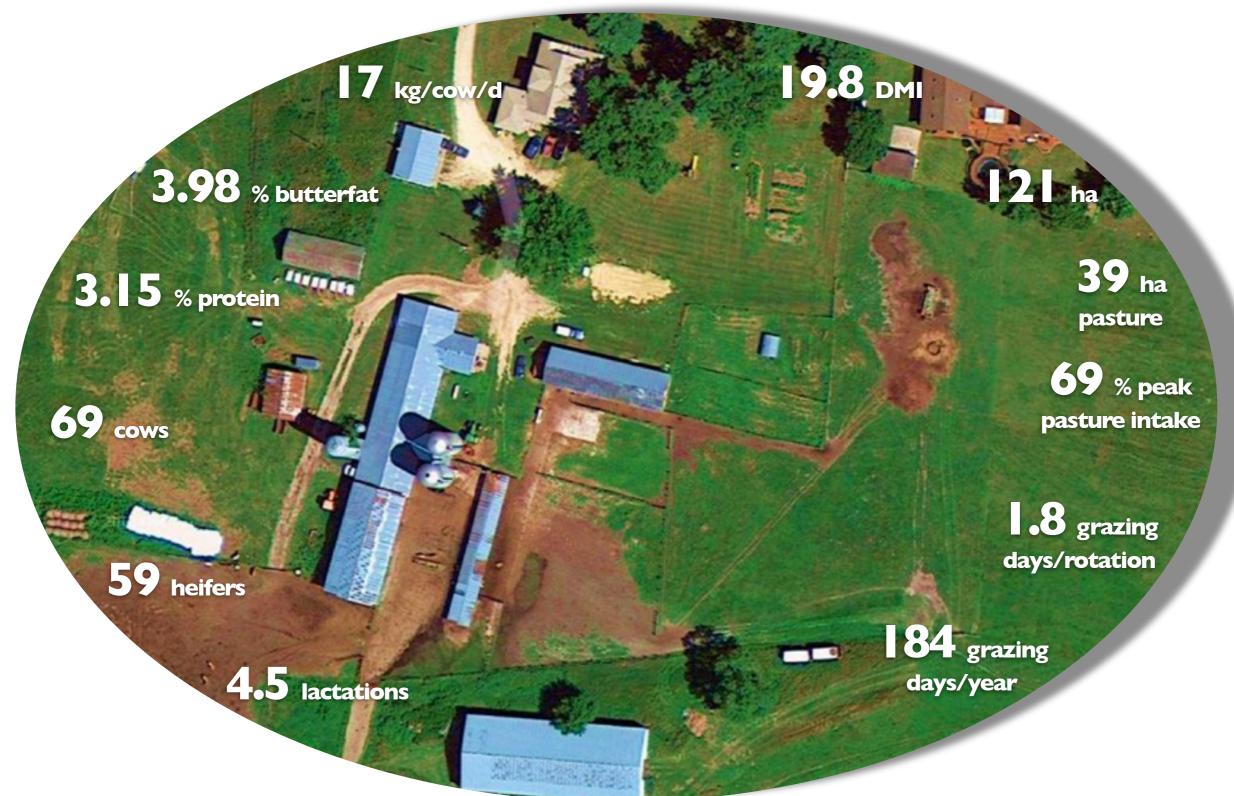
 Random sample from list of all dairy producers in Southwest

- 2. Purposeful sample of grazing dairy producers
- 3. All certified dairy cattle organic producers

The Interview

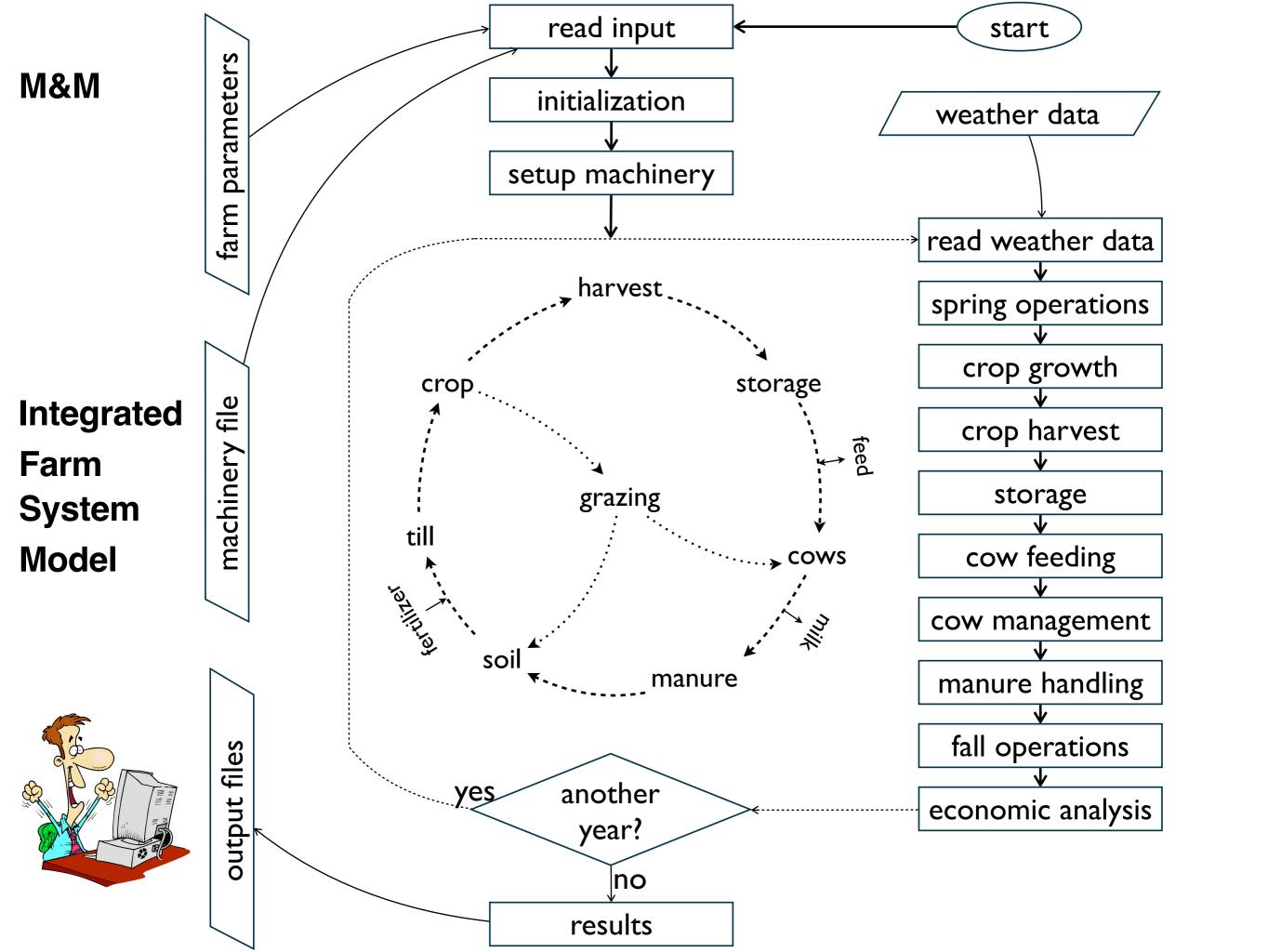
Face-to-face interviews

- 5 hours on average
- Collected 2011 and 2012
- Monthly data for 2010
- Observations: I31 farms


PhD Student
Marion Dutreuil

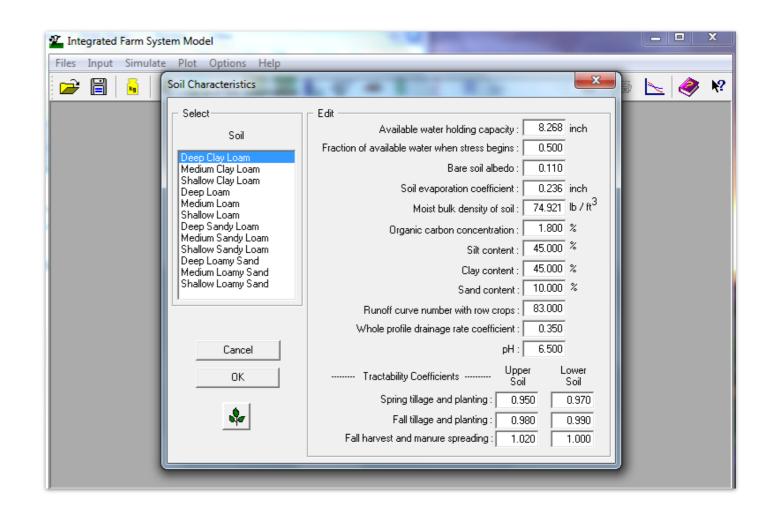
MS Student
Claudia Hardie

An organic WI dairy farm


A grazing WI dairy farm

The Integrated Farm System Model (IFSM)

- A whole-farm simulation for crop, dairy, and beef production
- Performs simulations
 over many years of
 weather to determine
 long-term performance,
 environmental impacts
 and economics


Simulates major process of crop production, harvest, storage, feeding, milk production, manure handling, nutrient balances, and gasses emmissions

IFSM inputs

10 Sections

- 1) Crop and soil
- 2) Grazing
- 3) Machinery
- 4) Tillage and planting
- 5) Crop harvest
- 6) Feed storage
- 7) Herd and feeding
- 8) Manure and nutrient
- 9) Economics
- 10) Weather

IFSM CROP inputs

- Alfalfa: acreage, standing life, fertilization, irrigation
- Grass: acreage, standing life, fertilization, grasses and legumes %.
- Corn: plant population, fertilization, irrigation.
- Small grain: type, double cropped, fertilization, irrigation
- Soybeans: plant population, fertilization, irrigation.

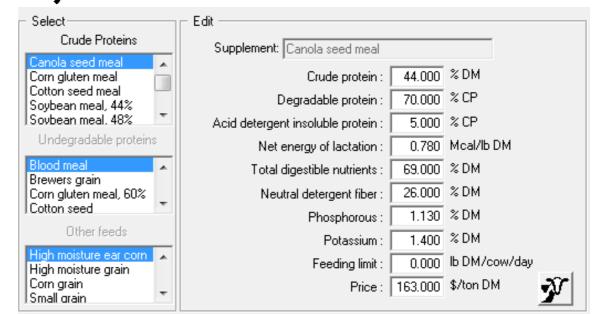
IFSM HARVEST inputs

SMALL GRAINS:

- Dates for harvesting as silage, high moisture grain or grain
- Use on the farm
- Use of straw for bedding

SOYBEANS:

- Starting date for harvesting
- Use on the farm
- Cost for roasting

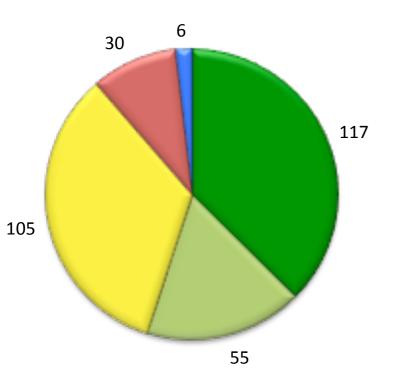

IFSM HARVEST inputs

- ALFALFA AND GRASS:
 - Up to 5 cuts.
 - Type of harvest, starting date and NDF content indicated for each cut.
 - Time available each day for harvesting can be adjusted.

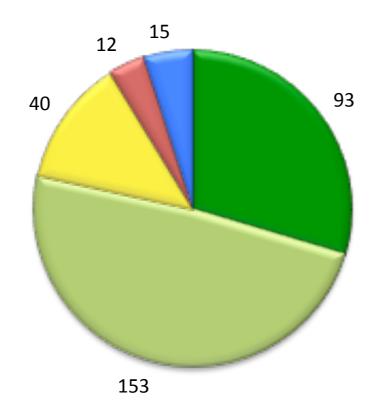
- CORN:
 - Dates for harvesting as silage, high moisture corn or dry corn
 - Corn silage cutting height
 - Corn silage processing
 - Type of high moisture corn

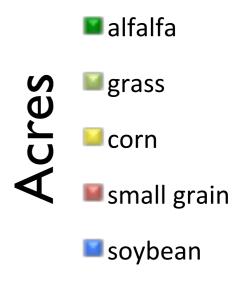
IFSM HERD inputs

- Breed, number of lactating cows, number of young stock over one year, number of young stock under one year, target milk production, proportion of first lactation animal in the herd, calving strategy.
- FEEDING:
 - Feeding method for grain, silage and hay
 - Ration constituents: % hay, % phosphorus, % protein, forage to grain ratio, protein and energy supplement.
 - Feed characteristics can be adjusted

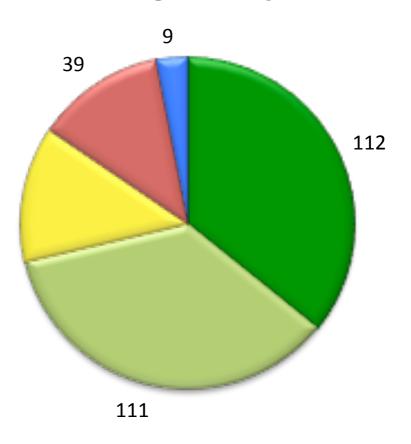


Farm profiles


	Conventional	Grazing	Organic	
Farmland, ac	313			
Cows	85			
Heifers	75	70	73	
Milk production, lb/cow/yr	22,341	16,508	14,012	
Milk price, \$/cwt	15.82	16.49	24.70	
Alfalfa, ac	117	93	112	
Corn, ac	105	40	41	
Soybean, ac	6	15	9	
Oats, ac	30	12	39	
Grass, ac	55	153	111	


Crop profiles

Conventional system



Grazing system

Organic system

Management strategies

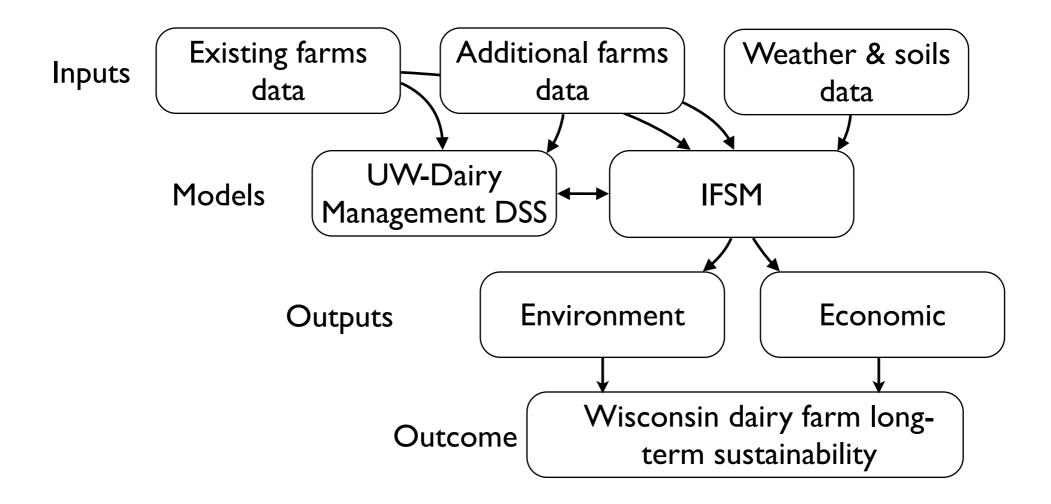
Conventional	Grazing & Organic
Allow grazing to lactating cows	Decrease forage:grain ratio
Incorporate manure same day of application	Add a 6-month manure storage facility
Suppress commercial fertilizers	Increase milk production by 30%

Results: Base

	Conventional	Grazing	Organic
Net return, \$/yr	105,008	101,360	151,342
GHGE total (lb CO2 eq./cow per yr)	14,636	10,140	10,398
GHGE total (lb CO2 eq./lb milk)	0.66	0.61	0.74
GHGE housing, %	45.3	37.2	38.0
GHGE manure, %	14.5	0	0
GHGE feed product., %	14.8	19.3	17.3
GHGE grazing, %	4.2	29.9	29.3
GHGE fuel, %	4.3	3.4	4.4
GHGE secondary, %	16.9	10.2	11.0

Results: Conventional

	Base	Grazing lactating cows	Incorporate manure same day	Suppress commercial fertilizers
Net return, \$/yr	105,008	113,330	105,103	113,755
GHGE total (lb CO2 eq./cow per yr)	14,636	12,067	14,691	14,436
GHGE total (lb CO2 eq./lb milk)	0.66	0.54	0.66	0.65
GHGE housing, %	45.3	29.9	45.2	45.9
GHGE manure, %	14.5	13.1	14.5	14.6
GHGE feed product., %	14.8	16.1	15.0	14.3
GHGE grazing, %	4.2	18.5	4.2	4.2
GHGE fuel, %	4.3	4.4	4.2	4.3
GHGE secondary, %	16.9	18.0	16.9	16.7


Results: Grazing

	Base	Decrease forage:grain	6-mo manure storage	Increase 30% milk prod.
Net return, \$/yr	101,360	79,859	101,115	146,477
GHGE total (lb CO2 eq./cow per yr)	10,140	7,852	10,628	10,660
GHGE total (lb CO2 eq./lb milk)	0.61	0.48	0.64	0.51
GHGE housing, %	37.2	32.8	36.0	34.7
GHGE manure, %	0	0	3.1	0
GHGE feed product., %	19.3	17.1	18.6	18.3
GHGE grazing, %	29.9	23.9	29.0	28.4
GHGE fuel, %	3.4	3.0	3.3	3.1
GHGE secondary, %	10.2	23.2	10.0	15.5

Results: Organic

	Base	Decrease forage:grain	6-mo manure storage	Increase 30% milk prod.
Net return, \$/yr	151,342	126,732	150,665	216,249
GHGE total (lb CO2 eq./cow per yr)	10,398	7,961	10,782	10,736
GHGE total (lb CO2 eq./lb milk)	0.74	0.57	0.77	0.59
GHGE housing, %	38.0	33.8	36.9	35.6
GHGE manure, %	0	0	2.9	0
GHGE feed product., %	17.3	15.0	16.6	16.3
GHGE grazing, %	29.3	24.5	28.5	27.6
GHGE fuel, %	4.4	3.5	4.3	4. I
GHGE secondary, %	11.0	23.2	10.8	16.4

Vision

Acknowledgment

Project Supported by USDA National Institute of Food and Agriculture Organic Agriculture Research and Extension Initiative Grant No. 2010-51300-20534

United States Department of Agriculture National Institute of Food and Agriculture

