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ABSTRACT 
 

This chapter offers some analytical insights for a comprehensive theoretical 
understanding of how to develop reliable ENSO-based crop yield forecasts and how to 
incorporate this information into an ENSO-sensitive farm-plan. A discussion on the 
usefulness of climate information for policy analysis is also presented. An improved 
basic understanding on the impact of seasonal climate variability (i.e., ENSO) on 
agriculture involves a more in-depth discussion of the value of the information as well as 
a broader knowledge of actual (or created) distinctions between adaptation, mitigation 
and response to climate risks. This chapter intends to inform the scientific community of 
the state-of-art on studies related to climate risk in agriculture and to help identify 
priorities for ongoing and future research. 
 
 

INTRODUCTION 
 
El Niño Southern Oscillation (ENSO) is a strong driver of seasonal climate variability 

that greatly impacts agriculture and regional economies (Legler et al., 1999). Advances in 
seasonal climate forecasting provide potential opportunities to reduce farm risk by tailoring 
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agricultural management strategies to mitigate the impacts of adverse conditions or to take 
advantage of favorable conditions (Letson et al., 2001). Indeed, previous research has shown 
that improved ENSO forecasts could significantly impact the economic wellbeing of farmers 
in the Southeast U.S. by helping them not only to select an optimum farm-plan, but also by 
assisting them in the selection of the best crop insurance strategy and/or the most adequate 
federal aid program (Cabrera et al., 2007). Additionally, Cabrera et al. (2006a) have shown 
that seasonal climate information can be used to facilitate dairy farmers in complying with the 
new environmental regulations.  

Economic benefits of seasonal climate forecast information have also been reported for 
semi-arid regions in developing countries (e.g., Roncoli, 2006). Traditional production 
practices in these less-favorable areas rely on rainfed technologies making them extremely 
sensitive to variations in rainfall. Thus, improvements in the dissemination of seasonal 
rainfall forecasts have been proposed as a reliable strategy to protect and boost household and 
national food security among environmentally and economically vulnerable regions (Dilley, 
2000). 

Managing climate risk is especially important in agriculture not only for the direct impact 
that climate has on production, but also for the tendency of most farmers to be risk averse. 
Risk aversion implies that farmers do not optimize their farm-plan for an upcoming season 
with average market and climate condition. Instead, they assume adverse conditions 
(Rosenzweig and Binswanger, 1993). Thus, reducing uncertainties of seasonal climate 
forecasts may help farmers select more profitable farm management strategies.  

Nonetheless, climate information by itself is of little help to farmers and decision-makers 
unless it is presented in a way that it can be incorporated into managerial and policy 
processes. Cabrera et al. (2007) argue that farm decisions are also influenced by exogenous 
forces like fixed market windows, fluctuation in market prices of both inputs and outputs, and 
policies and regulations from local and federal governments that may enhance or limit the 
usefulness of the climate information. Furthermore, even in the event of a perfect forecast of 
an ENSO phase (i.e., El Niño, La Niña and Neutral), there is still great intra-phase climate 
variability and uncertainty that significantly impacts farm risk. In addition, due to the 
complexity of agricultural systems, non-rigorous statistical analysis may misinterpret or 
overweigh the impact of climate on agriculture.  

To address these issues, alternative methodological frameworks have being developed in 
recent years to help farmers and policy-makers cope with climate uncertainty and other risks 
(e.g., Liu et al., in press; Cabrera et al., 2009; Rubas et al., 2006; Meza et al., 2003; Letson et 
al., 2001; Hammer et al., 2001; Mjelde and Hill, 1999). Also, further and faster advances 
expected in the sciences of climate and weather forecasting require the development of 
refined economic frameworks and analytical methods to help decision-makers take advantage 
and better assimilate this improved climatic information.  

Consequently, the goal of this chapter is to offer the scientific community a systematic 
review of how to incorporate climate information when studying agricultural production and 
risk management. To do so, we first present some evidence of the impact of ENSO on 
agricultural production. Then, we present a comprehensive framework to use climate 
sensitive crop-yield models. Based on these models we propose a framework to account for 
climate risk in the development of optimum farm-plans. Next, we depict some thoughts on the 
usefulness of climatic information on policy making. Finally, we end this chapter by 
presenting some ideas for future research.  
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ENSO IMPACTS ON AGRICULTURE 

 
Agriculture is a climate dependent activity, and because ENSO is one of the most 

important drivers of seasonal climatic variability around the world, it is expected that there 
would be correlations of different magnitudes and direction between crop yields and ENSO 
events. Furthermore, the capability of forecasting a specific ENSO phase has opened the 
opportunity of using this kind of information to predict with some level of skill future levels 
of agriculture production.  

The impact of ENSO forecasts has been reported by several studies. For instance, Lagos 
and Buizer (1992) reported that a forecast of the mild El Niño in 1986/87, guided farmers on 
the coast of Peru (an area directly affected by El Niño) to plant cotton and rice in ratios 
resulting in higher yields compared with previous cropping seasons without forecasts. In the 
western South Pacific Ocean, Kuhnel (1994) reported the negative effect of El Niño on the 
production of sugarcane in Australia, whereas Meinke and Hammer (1997) reported positive 
effects on the production of peanut. In western South America, Podestá et al. (1999) reported 
increases (decreases) in maize and sorghum yield during El Niño (La Niña) in the Argentine 
Pampas (central-eastern Argentina), whereas Roel and Baethgen (2006) reported the opposite 
response of Uruguayan rice production. Hansen et al. (1999) reported ENSO impacts on 
winter vegetable production in Florida, Selvaraju (2003) assessed its effects on the production 
of grains in India, and Phillips and McIntyre (2000) analyzed its effects on several crops in 
parts of Uganda. 

 
 
FRAMEWORK FOR ENSO-BASED CROP YIELD FORECASTING 

 
Although there is strong evidence of the relation between ENSO and crop yields, 

empirical studies on this subject should follow a rigorous scientific framework in order to 
reduce the risk of finding inaccurate, artificial and misleading relationships between ENSO 
and crop yields. The following steps give a conceptual framework of how to perform a 
statistical analysis and the issues to take into consideration for the development of accurate 
ENSO-based crop yield forecasting. 

 
 

Detrending Crop Yield Data 
 
Examining the impact of Southern Oscillation on Texas sorghum and winter wheat 

yields, Mjelde and Keplinger (1998) found that technological changes tend to hide the effects 
of seasonal climate factors like ENSO. Many non–climatic factors influencing crop yield time 
series include: 1) changes in varieties; 2) soil quality, 3) technology (e.g., mechanization, 
shifts between rainfed and irrigated production); 4) and market influences on intensity of 
production and input use. Therefore, when a technological trend is apparent, it is necessary to 
remove it from the crop yield series before starting looking for correlations between crop 
productivity and climate. In areas with multi-decade unchanged traditional crop management, 
this procedure can obviously be overlooked. 
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To detrend the crop yield time series, it is assumed that climatic influences on crop yields 
generally occur at a higher frequency than non–climatic influences (Baigorria et al., 2008; 
Podestá et al., 1999). Therefore, a low-pass spectral filter (Press et al. 1989) can be used to 
obtain the annual yield residuals. This methodology first removes the linear trend. Then it is 
necessary to apply a Fourier transformation and remove low-frequency variations. Finally, the 
inverse Fourier transformation is applied and the linear trend is added again. The choice of 
the length of the low frequency period is arbitrary, so it is recommended to try periods larger 
than 10 years to avoid the removal of annual fluctuations in yield associated with climate 
variability. It is also important that detrending has to be done for a specific location because 
places, even those close one to another, could respond to a different low frequency period, 
and that the removed trend must be always go upward in time. 

 
 

Statistical Comparisons 
 
After detrending crop yields, the new crop yield residual time series must be divided 

according to each ENSO-phase. Timing is an important issue during the categorization (i.e., 
the cropping season) and must concur with or follow the ENSO event. This is especially 
important in the case of northern hemispheric lands where crops are planted from March to 
July (depending mostly on the latitude and the crop) whereas ENSO events develop during 
spring and summer in the southern hemisphere (winter in the northern hemisphere). Then, 
higher correlations between crop yields and ENSO events should be expected for summertime 
crops in the southern hemisphere (e.g., Lagos and Buizer, 1992; Podestá et al., 1999) and 
wintertime crops in the northern hemisphere (e.g., Hansen et al., 1999). However, 
summertime crops in the northern hemisphere can also be affected because changes in rainfall 
patterns during previous months can modify soil moisture conditions prior or during planting 
(e.g., Frassie et al., 2006). Apart from the well-known direct connection, there is also a lag 
time effect, from weeks to months, between the occurrence of an ENSO event in the Tropical 
South Pacific and more distant areas as the warm (cold) water moves. This could also modify 
regional climate patterns affecting spring and summer cropping seasons. In the case of 
multiyear crops like sugarcane, productivity levels must be related to ENSO events occurring 
up to a year before harvesting (Kuhnel, 1994). 

After dividing the time series according to the three ENSO-phase categories, these 
datasets must be statistically compared in order to test the hypothesis of the influence of 
ENSO on crops yields. To perform this, an analysis of variance F-statistic (ANOVA) gives 
the result if at least one of the ENSO-based crop yield categories is statistically different from 
the others. If statistical significance is found, a multiple range test such as Duncan’s multiple 
range test or Tukey’s test can be applied in order to identify which ENSO-based crop yield 
category(ies) significantly differ from the others (Baigorria et al., 2007a; Hansen et al., 1999). 

 
 

Use of Dynamic Crop Models 
 
Whether or not a significant difference among the ENSO-based crop yield categories is 

found, previously calibrated and validated dynamic crop models can support looking for 
alternative crop management strategies for using categorical ENSO forecasts. Dynamic crop 
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models are mathematical representations describing growth and development of a crop 
interacting with a soil profile (Wallach 2006) under a given sequence of atmospheric 
conditions. 

Crop models have been calibrated and validated in different regions of the world (e.g. 
Fraisse et al., 2001; Jones et al., 2003; Lizaso et al., 2003) and used for studying impacts of 
climate variability and change in several regions around the globe (e.g., Adams et al., 2003; 
Baigorria et al., 2007b; Dubroský et al., 2000; Hansen and Indeje, 2004; Legler et al., 1999; 
Meinke and Hammer, 1997).  

Furthermore, crop models have been used to find best management practices by changing 
crop management under different ENSO-phases (Cabrera, et al., 2006b; Paz, et al., 2007; 
Podestá et al., 2002; Steele, et al., 2001). Changing crop, crop cultivars, planting dates, 
nitrogen fertilization, among others, are farm-feasible alternatives. Since crop models can 
simulate crop responses to these alternative management options, they constitute an efficient 
tool to evaluate the different seasonal climate scenarios provided under different ENSO-
phases.  

 
 

Uncertainty 
 
Lastly, although by definition, El Niño and La Niña events are well defined by 

establishing spatial (El Niño Regions), temporal (6 months) and thermal (± 0.5°C using 5-
month running mean) thresholds in the Tropical South Pacific, intensity and volume of the 
total amount of warm (cold) oceanic water differ among events within each ENSO-phase. 
This internal variability within categories creates uncertainties in the interpretation of how an 
ENSO event affects crop yields in a given location.  

The best way to introduce this uncertainty in the analysis is running the crop models 
using all the available years of meteorological information for each ENSO-phase and not only 
one representative year.  

In this way, probability distributions of the expected yields under each ENSO-phase are 
obtained. One problem of this approach is the limited historical record of meteorological data 
and issues related to the errors and missing values. Weather generators are statistical tools 
that produce daily synthetic meteorological values that reproduce the main statistics of the 
historical record (e.g., Richardson and Wright, 1984; Schoof et al., 2005). The versatility of 
these weather generators opens the possibility to modify the analysis in order to be driven by 
specific climate events such as ENSO-phase (Grondonda et al., 2000) and climatic change 
(Dubroský et al., 2000).  

By using these tools it is possible then to generate hundreds of realizations consistent 
with a specific ENSO phase, thus making it possible to generate probability distributions of 
expected values and its use as input for other applications such as those described in 
following sections of this chapter.  

The following section focuses on the impact of climate risk on farm decision making. 
First we present the foundation of farm-risk analysis. Then we describe a framework for 
incorporating seasonal climate risk in an optimal farm-plan model.  
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AGRICULTURAL CLIMATE RISK DECISION MAKING 
 
As we have portrayed, agricultural production is very sensitive to climate variability. In 

addition, agriculture is also affected by many other factors like rural policies, prices of inputs 
and outputs, international trade, etc. That is, an agricultural decision-making process is 
performed under risky conditions. Anderson et al. (1977) state that any risky decision may 
account for the following five components: 1) alternatives, 2) conditions, 3) probabilities, 4) 
consequences, and 5) value. These components can be defined for an agricultural scenario 
under seasonal climate variation as follows. Alternatives are all potential actions the decision 
maker can select to reduce risk (e.g., crop variety, planting date, irrigation schemes, etc.). The 
Ambient conditions include seasonal climate variability that affects agricultural production 
(e.g., wetter and colder summer conditions during El Niño, or drier and warmer winter 
conditions during La Niña in Florida). Prior probabilities are the chances of historical 
occurrences of each of the possible conditions (e.g., ENSO neutral years have a historical 
probability of once every two years). These probabilities are associated with their conditions 
under a set of selected alternatives leading to particular consequences in the outcomes. The 
consequences include the relative chances of all potential occurrences (e.g., better than usual 
yield due to increased precipitation during a predicted El Niño year will be offset by the 
alternative chances of not occurring in an El Niño year.). Finally, the value represents the 
measurable outcome (usually a monetary value) of the alternative selected under the risky 
conditions. For example, the net revenues of selecting a pest control management because of 
a seasonal climate forecast needs to be weighed against the decision of not using the climate 
information.  

Dijkhuizen et al. (1997, p. 136) add that based on the complexities of the agricultural 
sector, five extra elements should be considered. These new elements adapted to climate risk 
decision making are: 1) opportunity of using the climate information; 2) defining actions to be 
taken with the climate information; 3) gathering, synthesizing and analyzing the information; 
4) making and implementing the decision; and 5) evaluating the results of the decision of 
using or not the climate information.  

To model the farm decision-making process under climate uncertainty researchers have 
been using four major alternative methodologies (Rubas et al., 2006): 1) decision theory, 2) 
equilibrium modeling, 3) game theory, and 4) mechanism design theory. From this group, 
decision theory has remarkably dominated the literature on climate forecast applications in 
agriculture. Decision theory assumes that a single decision agent (i.e., a farmer) makes a 
decision that will have consequences on the farmer’s enterprise. However this method does 
not account for the effect on other farms or surrounding enterprises. This assumption limits 
the decision theory approach to be farm-specific and cannot be used for large scale studies, in 
which case the other three methods would be more appropriate. Nonetheless, it is important to 
indicate that the other three alternative methods are highly theoretical frameworks, and 
consequently, less suitable for developing practical advice for farmers and decision makers. 
Consequently, the rest of this section focuses only on thoroughly describing the decision 
theory. 

Decision theory implies the solution of an optimization problem that involves the utility 
function. Specifically, the model maximizes the expected utility subject to the expected 
returns based on a seasonal climate forecast obtained from prior knowledge.  
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Decisions in this context include the risk preference of the decision maker. Farmers, as 
do most people, tend to be risk averse decision makers. There have been several attempts to 
characterize farmers’ preferences on risks. The most widely used model to characterize risk 
decision preference in agriculture using climate information has been the expected utility 
function (EU). The EU weighs the probability of each potential outcome generating a 
comparable index to help in the decision. In order to implement an EU model it is necessary 
to have the risk preferences of the farmers. The concept of certainty equivalent (CE) or, in 
other words, the willingness of a decision maker to trade a lower value, more secure 
enterprise for a higher value, less secure enterprise. The CE function has proven to be a useful 
technique to characterize farmers’ risk preferences. Several studies on climate decisions have 
used Hardaker (2004) farmers’ risk aversion typology to classify farmers as risk neutral, 
hardly averse, rather averse, very averse or almost paranoid.  

A relatively new method adapted to agricultural climate decision making is the 
conditional value at risk (CVaR). The CVaR has been widely used in financial problems and 
introduced recently to agriculture (Cabrera et al., 2009; Liu et al., in press). Different from the 
utility function, the CVaR does not assign risk preferences to the decision makers per se. The 
CVaR, instead, finds the optimal frontier curve and characterizes risk proposals according 
different levels of risk of success or failure. 

An additional concept of importance in agriculture decision making is the Bayes’ theorem 
that goes one step further on the probabilities of outcomes when using climate information. 
Whereas an initial analysis of the historical outcomes will rely on historical chances of 
outcomes (e.g., El Niño occurs 25% of the years and during an El Niño year there will be 
30% chance of above average precipitation) and consequently analyze only what these 
probabilistic outcomes would be, the Bayesian approach includes, in addition, the probability 
of the actual outcomes related to those predicted with the historical data. Consequently, under 
a Bayesian framework, there will be a distinction of ‘prior’ (historical) and ‘posterior’ 
(observed) probabilities. The Bayesian method has proven useful in several areas of 
agriculture (e.g., pest control and herd health) and has also been applied on climate use in 
agriculture (Stern and Easterline, 1999). By logical deduction, decision makers would make 
‘better’ decisions if they knew how good the prediction has been in recent past years. 

However, we argue that the Bayesian approach is not the best choice under ENSO based 
seasonal climate prediction use for agricultural production due to the following reasons: 1) 
even for a perfect ENSO forecast, variability inside the phase will make trivial the use of 
posterior probabilities; 2) information to characterize ENSO phases is limited in nature (i.e., 
less than 20 El Niño occurrences have been documented to date) and new information is more 
valuable to complete historical distributions than to create new distributions; and 3) the 
introduction of Bayesian factor into the analyses introduces another source of variability that 
is difficult to account for by the decision-maker. Many of the latest studies on climate 
agriculture decision-making have better used Monte Carlo techniques to account for missing 
information in the distribution of ENSO phases (Cabrera et al., 2007; Letson et al., 2005). 

Although different scientific articles have used the methodologies presented above to 
control for climate variability on agricultural studies, a thorough analysis of the impact of 
climate on agriculture requires the implementation of a formal framework. In the following 
section we describe a framework to introduce climate information in farm optimization 
analyses.  
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INTRODUCING SEASONAL CLIMATE INFORMATION IN FARM 
OPTIMIZATION ANALYSES 

 
The introduction of seasonal climate information when analyzing farm risk must follow a 

rigorous framework to avoid biased results. Based on the literature and on our experience we 
propose the following framework to incorporate seasonal climate information when studying 
the farm decision-making process. This framework is composed of the following steps: 1) 
Identify the problem and the opportunity of using ENSO-based climate information: 2) 
Gather adequate data; 3) Synthesize, organize, analyze, and expand the data; 4) Set up the 
optimization model and the risk preferences; and 5) Assess the value of climate information 
in agricultural production.  

 
 

Identify the Problem and the Opportunity of Using Seasonal Climate 
Information 

 
Agriculture is a climate vulnerable enterprise and there are easily identifiable potential 

opportunities to use seasonal ENSO-based climate information to improve agricultural 
production. Some examples are land allocation, variety and crop selection, and planting dates. 
For instance, rainfall in Florida is highly sensitive to ENSO phases with an average excess of 
about 40% of the normal rainfall during an El Niño year and with deficits of about 30% 
during a La Niña year (Jagtap et al., 2002). Thus, most of the crops raised in Florida are 
influenced by ENSO conditions (Hansen et al., 1999). An analysis of 40 years of crop yield 
historical data (information available at AgroClimate.org) indicates that peanut would have 
higher than average yields during both La Niña and El Niño years (4.4 and 3.3% above 
average, respectively). Conversely, cotton yields would be lowered by 9.1% and 0.3% during 
La Niña and El Niño years, respectively. And, for corn there would be an increase of yields 
during La Niña years of 0.7% and a decrease of 17% during El Niño years. 

A closer look at this information suggests that farmers potentially have many alternatives 
to adapt to climate variability and to avoid the economic consequences of an abnormal 
climate year. However, current research offers limited information on the impact of ENSO on 
production. Thus, further analyses of the impact of ENSO on all available crops in a specific 
area are much needed to offer farmers the necessary tools to establish sustainable long-run 
farm-plans. 

 
 

Gather the Adequate Data 
 
To perform an accurate study, different sources of information will be needed. It is 

critical to obtain reliable and long time series of daily weather data which contain all the 
necessary parameters for the agricultural enterprises to be studied. For instance, Cabrera et al. 
(2007) used data on maximum and minimum temperatures, incoming solar radiation, and 
precipitation on a daily basis for a 65-year period. These parameters were selected because 
they were needed to simulate process-based crop growth and crop yields. On the other hand, 
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if animal production were the primary objective in the analysis, relative humidity would be 
essential to characterize thermal heat stress. 

Another important set of data is the agronomic information. This information is needed to 
find all alternatives management options for a specific crop. For example, in North Florida, 
the variety Georgia Green of peanut is planted between mid-April and mid-June, with a 
traditional N fertilization of 10 kg/ha at planting. This information will be used to simulate 
the growth and yield of this enterprise and compare it with other alternative management 
options. Crop rotation and land allocation are also important data to constrain the 
optimization model in the most realistic way. 

Economic information such as cost of production and commodity prices are also crucial. 
Although cost of production (including fixed and variables costs) can be accepted as constant 
throughout the analysis, commodity prices need to be introduced as probabilistic 
distributions. In the risk decision making scheme, profitability is crucial. When considering 
constant costs of production, total revenue becomes the most important factor in decision-
making and this is calculated by multiplying the yields of the agricultural enterprises by their 
market prices (both factors highly variable and uncertain). Therefore, a reliable source of 
historical commodity prices that allow a fair characterization of the price distributions is 
needed.  

 
 

Synthesize, Organize, Analyze, and Expand the Data 
 
Once the different sources of information are available and before engaging in further 

analyses, a quality control is required. Plotting and performing descriptive statistics would 
help in finding inconsistencies, missing information, and outliers that need to be examined. 
For the weather information it is important to perform these analyses disaggregating the data 
by ENSO phases. 

A thorough assessment of climate risk and forecast value needs a more complete picture 
of the distribution of ENSO past events. For instance, during the last 64 years there have been 
only 14 El Niño events and 16 La Niña events. To obtain more robust results Letson (2005) 
expanded the historical weather data using stochastic weather generators to produce synthetic 
daily weather series with statistical resemblance to original historical data. Another solution is 
to use the available historical weather data to simulate agricultural yields and then simulate 
series of yields characterized by ENSO phases as was performed in Cabrera et al. (2007). 

A similar dilemma is faced for commodity prices. Only a limited number of years of 
price data would be available and to give a fair analysis of each ENSO phase a similar 
matching price is needed. In Cabrera et al. (2007, 2009) and Letson et al. (2005), a 
distribution of 990 records of crop yields were generated for each ENSO phase, consequently 
a distribution of 990 price-years were generated for each commodity. Commodity prices were 
assumed to be completely independent of ENSO climate characteristics. Agricultural 
commodity prices could have large distortions because of farm government programs and 
other non-farm controllable situations, which need to be considered during the generation of 
these price series. Lastly, different policies can be set with the model to analyze impacts of 
external forces in price distortion. 
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Set Up the Optimization Model 
 
The goal of this subsection is not to give the reader a mathematical derivation of a farm 

optimization model under climate risk1

Technically speaking, the optimization model compares expected utilities of all possible 
sets of management strategies within the model restrictions. By iteration, the model keeps the 
strategies generating the higher net returns and discards the ones with lower returns. At the 
end, the model presents the set of management options that provides the highest farm 
expected utility. The model can be adapted in such a way that a farmer can select the best 
management option that accommodates a specific climate scenario. 

, but rather to walk the reader through the logical 
process of solving and understanding the decision problem. The objective of an optimization 
model is to find the maximum expected utility under a specific climatic condition, such as 
specific ENSO phase.  

A refinement of this analysis includes the incorporation of the level of risk aversion of 
the decision maker in the optimization process. This procedure can be performed by 
introducing a power function into the model. In doing so, the first step of the optimization 
will present a set of management practices that yields the maximum expected utility by risk 
aversion level. Next, the expected utility of all records need to be re-assembled using the 
optimal management. 

 
 

Assess the Value of Climate Information on Agricultural Production 
 
The value of climate information can be finally calculated as the difference between the 

expected utility of a model accounting for ENSO-based forecast minus the expected utility of 
a model solved not using ENSO sensitive data. Positive values for ENSO information have 
been reported by Cabrera et al. (2007, 2009), Letson et al. (2005) and Messina et al. (1999), 
among others. However, under risky conditions of climate and prices, there is a likelihood of 
having negative values for climate information as well. A negative value of the information 
means that the farm would have been better off without using climate information, which is a 
possibility that the farmer needs to evaluate for final decision.  

The framework presented in this section allows farmers to make a more informed 
decision by including seasonal climate and other risks into their analysis. Depending on the 
decision-maker risk preference, it is possible to reduce or even eliminate the likelihood of 
negative values for climate information by trading it off with overall expected utility 
reduction.  

It is important to highlight that a positive (negative) value for ENSO information does not 
mean that the farm will generate positive (negative) net returns, but rather that farmers will be 
better off (worst off) using seasonal climate information in their farm decision-making 
process.  

 
 
 

                                                        
1 A good presentation of a farm-optimization model accounting for climate variability can be found in Letson et al. 

(2005). 
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POLICY, DECISION MAKING AND USEFULNESS OF 
CLIMATE INFORMATION 

 
Our previous sections have shown that climate information can be highly valuable for 

both farmers and policy-makers. However, several issues may still prevent its complete 
applicability to develop policies and to help farmers in their decision-making process. One of 
the most important factors affecting the implementation of seasonal climate sensitive farm 
and economic models relates to the uncertainly of accurate prediction of weather forecasts. 
Quiggin and Horowitz (2003) argue that since the predictability of long-run climate systems 
are highly uncertain; farmers will take suboptimal economic decisions based on ex post 
response to climate information. For instance, farmers facing a run of dry seasons must 
choose whether or not to continue in business without knowing if the climate has undergone a 
permanent change or if the run of dry seasons is just a temporal random fluctuation.  

In addition, routine availability of ENSO-based climate forecasts will not, by itself, 
increase agricultural incomes or lower production costs in ENSO-influenced regions. Climate 
information is but one of three parallel processes that comprise the forecasting process. In 
addition to the prediction itself, a communication process shares the prediction and a choice 
process focuses on decisions (Pielke, 1998, Pielke, et al. 2000). The research community’s 
definition of a ‘good’ forecast does not necessarily agree with policy makers’ or society’s 
view of what is most important (Offutt, 1993). Partly the problem is one of communication. 
Fischhoff (1994) identifies several problems in communicating forecasts, including ambiguity 
regarding the event being predicted and what is being said about it, and the relevance of the 
forecast for users’ problems. In their review of forecasts for the 1997/98 El Niño, Barnston et 
al. (1999) cite ambiguous descriptions of magnitude, time of onset, and duration. Also, 
different stakeholders have different preferences about what a forecast should do. Thus efforts 
to ‘educate’ the public are unlikely to make them see forecasts as experts do (Freudenburg 
and Rursch, 1994). It is important to mention that in recent years major efforts have been 
undertaken to develop agricultural decision support tools with the aim of helping farmers 
cope under climate uncertainties (Breuer et al., 2008). A good example is the AgroClimate 
web site (http://AgroClimate.org/) developed by the Southeast Climate Consortium. 
However, this is clearly an area that merits further research. 

Another set of concerns for decision makers involves the application of seasonal climate 
forecasts. The mere existence of a technical innovation such as improved seasonal climate 
forecasts does not ensure that the innovation is refined or adaptable enough to meet potential 
users’ needs (Schultz, 1964); and thus, forecast use has advanced slowly (Trenberth, 1997; 
Changnon, 1999; Goddard et al., 2001). Whether a climate forecast can be useful depends on 
four conditions: 1) the availability of a forecast of seasonal climate conditions relevant to 
decisions, with appropriate lead time, and geographic and temporal resolution; 2) the 
feasibility of alternative actions that can be taken in response to a climate forecast; 3) the 
ability to evaluate the outcomes of those alternative actions; and 4) the willingness of decision 
makers to adopt climate adaptive management in an already complicated decision-making 
environment. 

Economists attempt to combine many of the concerns about forecast skill and application 
when they assume decision makers will use forecasts that are valuable. Forecast ‘value’ is 
based on the expected outcome from an improved, forecast-assisted decision compared to the 
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expected outcome of the decision without the forecast. The value seasonal climate forecasts 
may have and under what decision circumstances (such as crops grown, resource conditions, 
and production technology) have become important public policy concerns. In many countries 
seasonal climate data, forecasts and technical assistance are often provided and subsidized by 
the public sector (Glantz, 2000). Estimating forecast value can help show if improved forecast 
provision and dissemination would offer more to society than other innovations, such as new 
or genetically modified seed varieties. Many have estimated how much value forecasts may 
have for agriculture (Mjelde et al., 1996; Hammer et al., 2001; Meza et al., 2003). Mjelde et 
al. (1998) and R. Katz’s internet site (www.esig.ucar.edu/HP rick/agriculture.html) offer 
literature surveys of studies that estimate forecast value for agriculture. 

While the notion of a potential value for seasonal climate forecasts has been established, 
questions of when they may be most valuable have proven harder to be resolved, in part 
because of the intricacy of many decision contexts. Seasonal climate forecast value perhaps 
most clearly depends on how good the forecast tends to be. Foremost in forecast value 
discussions has been its relationship to forecast quality measures, particularly skill (Katz and 
Murphy, 1997). Much important research has sought to link forecast skill and value (Murphy, 
1997; Wilks, 1997). Once established for a given decision environment, the skill–value 
linkage allows researchers and users to evaluate the incremental benefits from actual or 
hypothetical forecast improvements. 

The close association between forecast skill and value has led to some confusion, as 
noted by Murphy (1993). While forecast value depends partly on skill, the two concepts differ 
in important ways as Hartmann et al. (2002), and Meinke and Stone (2005) clarify: a highly 
skillful forecast could have no value, and one of modest skill, if well applied, could have 
value under the right circumstances. As Pielke et al. (2000, p. 366) note, “comparing a 
prediction with actual events does not provide sufficient information to evaluate its 
performance.” Other influences on forecast value warrant attention, especially those that are 
random and region or application-specific (Wilks, 1997; Hartmann et al., 2002).  

 
 

CONCLUSION 
 
The goal of this chapter was to offer some analytical insights for a comprehensive 

theoretical understanding of how to produce an ENSO-based crop yield forecast and how to 
incorporate this information into a farm plan. A discussion on the usefulness on this kind of 
information for policy analysis was also presented. An improved basic understanding on the 
impact of seasonal climate variability (i.e., ENSO) on agriculture involves a more in-depth 
discussion of the value of the information as well as a broader knowledge of actual (or 
created) distinctions between adaptation, mitigation and response to climate risks. This 
chapter summarizes the available literature as well as our experience in this field and provides 
a starting point for further discussion. 

Current research has shown that farmers can be better off by using seasonal climate 
information when deciding their farm plans. In addition, society would also gain if policy-
makers adopt this knowledge when discussing rural policies, subsidies and aid programs. 
Nevertheless, agricultural technology is highly ‘location specific’ and must be adapted to the 
cultural and resource conditions where it is to be applied (Schultz, 1964). Although high 
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quality research has been published on the impact of seasonal climate variability on 
agricultural production, the literature has focused on a handful of crops and in very limited 
geographic areas. Thus, much research is needed to expand our knowledge in this field.  

On the other hand, farmers and decision makers may elect not to use seasonal climate 
forecasts for many reasons. One concern may be forecast quality, or the degree to which the 
forecast corresponds to subsequent observations. To be useful, a forecast must offer skill, or 
higher quality than that of a naïve forecasting system, such as the average conditions over 
many years for that location and time of year (i.e., climatology). Current understanding of sea 
surface temperature variability in the equatorial Pacific and its climatic impacts enables 
skillful forecasts of future sea surface temperature anomalies, although with errors (Landsea 
and Knaff, 2000).  

Lastly, the literature on agricultural climate risk management is highly dominated by 
studies on crops. A reason for this situation may be that livestock spend part or all of their 
time in confinement, not having direct impact of the weather inclemency. However, we 
believe there are opportunities to expand and apply this area of research to livestock 
agriculture. Dairy cattle milk production alone, for example, is diminished between 68 and 
2072 kg/cow per year in the US due to heat stress (St-Pierre et al., 2003), a condition that 
could be improved if ENSO-based information would be used to prepare actions on dairy 
farms.  
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