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Abstract. Predictability of seasonal climate variations associated with ENSO suggest a potential to 
reduce farm risk by tailoring agricultural management strategies to mitigate the impacts of adverse 
conditions or to take advantage of favorable conditions. Federal farm policies may enhance or limit 
the usefulness of this climate information. A representative peanut-cotton-corn non-irrigated north 
Florida farm was used to estimate the value of the ENSO-based climate information and examine 
impacts of farm programs under uncertain conditions of climate and prices. Yields from crop model 
simulations and historical series of prices were used to generate stochastic distributions that were 
fed into a whole farm model, first, to optimize management practices, and then, to simulate uncertain 
outcomes under risk aversion, with and without the use of climate information, and with and without 
the inclusion of farm programs. Results suggest that seasonal climate forecasts have higher value 
for more risk averse farmers when forecast La Niña or El Niño ENSO phases for offensive responses 
(taking advantage of favorable conditions). The inclusion of Commodity Loan Programs and Crop 
Insurance Programs decreased the overall value of the forecast information to even negative levels. 
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However, more risk averse farmers could still benefit moderately of El Niño and marginally of La Niña 
forecasts when they participate of these farm programs. 

Keywords. Farm risk, value of climate information, farm programs, crop insurance, commodity loan 
program, farm simulation, optimization modeling, Jackson County, Florida, peanut, cotton, maize, 
corn, policy.
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Introduction 

Major improvements in climate predictions related to the phenomenon known as El Niño-
Southern Oscillation (ENSO) call for studies to estimate the value of this technology and its 
potential uses to reduce farm risks.  Agricultural sector, among the most vulnerable to climate 
changes, can use seasonal forecasts to mitigate the impacts of adverse conditions or to take 
advantage of favorable conditions. However, farm decisions are not isolated and always include 
decision making institutions such as federal farm policies and regulations that may enhance or 
limit the usefulness of this climate information (Hansen, 2002). 

Several studies have previously estimated the agricultural forecasts value (Letson et al., 2005; 
Meza et al., 2003; Meza and Wilks, 2003; Hammer et al., 2001), but only few have included the 
government institutional impacts on the value of the seasonal forecasts (Mjelde et al., 1996, 
Bosch, 1984). Mjelde et al., 1996 remains the state of the art analysis on how farm programs 
might influence the value of climate information; but since that time, farm legislation has 
undergone substantial changes, and researchers have learned a great deal on how to estimate 
climate information value. An update is required. 

Synergies or conflicts between farm programs and climate information represents a critical 
knowledge gap in how we should think about climate forecast value. Farm programs condition 
the use of climate information in a variety of ways: a) they limit the range and efficacy of 
forecast responses since farm programs restrict the crops farmers can grow and how they may 
grow them; b) farm programs often raise commodity prices, so they also tend to raise land 
values and enhance trends toward larger farming enterprises; and c) farm programs alter the 
riskiness of decision environments since they (are intended to) reduce the variability of farming 
incomes. 

The objective of this study is to estimate the impacts of farm programs on the value of ENSO 
forecasts in a rainfed peanut-cotton-corn farm in Jackson County, Florida. We tested the 
hypothesis that government interventions might enhance or limit the usefulness of the climate 
information. This study expands the framework used by Letson et al., 2005 by including the 
impacts of government farm programs into the estimations of the forecast value. We understand 
for forecast value as the monetary amount change (i.e., US$ ha-1) in the net income resulting of 
incorporating seasonal climate forecast information in the farm decision making.    

Materials and Methods 

1. Representative farm 

The study was conducted on a representative 128.7 ha rainfed farm in Jackson County, FL 
(30.774N, 85.226W) that grows peanut, cotton, and maize in soils type Dothan Loamy Sand. 
We selected this specific case study because it has similarities in environment (e.g., climate, 
soils), resources (e.g., farm size, crops growth), and technology (e.g., rainfed agriculture) to 
other major agricultural production areas in the Southeast United States, which would suggest a 
broader relevance of our findings. 

Jackson has a median annual precipitation of 1466 mm and an average temperature of 19.3 °C 
(www.AgClimate.org). During the growing season (February-November) the rainfall is 1143 mm 
and the temperature is 21.7 °C. ENSO phases influence climate in the study area. 
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2. The Jackson model  

We integrated climatic, agronomic, economic, and policy components in a farm decision model. 
This model first optimizes management practices with and without forecasts and with and 
without Farm Programs, and then simulates net margins over long periods of time. 

The climatic component uses 65 years of daily weather records. The agronomic component 
stochastically generates crop yields for ENSO phases by re-sampling simulated crop yields of 
biophysical models. The economic component stochastically generates distributions of likely 
crop prices based on historical prices and government farm programs. 

To test our hypothesis that Federal farm policies may enhance or limit the usefulness of the 
climate information (Mjelde et al., 1996) we introduced two farm programs consisting of 
commodity loan programs (CLP) and crop insurances (CIP). The CLP included loan deficiency 
payments (LDP) and marketing loan benefits (MLB), while the CIP included multi-peril crop 
insurance (MPCI) and crop revenue coverage (CRC). In the study area, LDP are available for 
cotton and MLB are available for peanut and maize. Also, MPCI is available for the three crops, 
but CRC is only available for cotton and maize. 

2.1. Agronomic component 

2.1.1. Crops yield simulation by ENSO phase  

The longest historical daily weather record (including rainfall, T max, T min, and irradiation) 
representative for Jackson County is 65 years (1939-2003) from the weather station at Chipley 
(30.783N, 85.483W). During this period of time, 14 years were El Niño and 16 La Niña (Table 
1). 

Table 1. ENSO phases during the period 1939-2003 

 El Niño La Niña 

 1941 1952 1958 1964 1966 1970 1939 1943 1945 1950 1955 1956 

 1973 1977 1983 1987 1988 1992 1957 1965 1968 1971 1972 1974 

 1998 2003     1976 1989 1999 2000 

These weather series were used to simulate and classify crop yields of peanut, cotton, and 
maize by ENSO phase. Crops yields were simulated using models in the Decision Support 
System for Agrotechnology Transfer v4.0 (Jones et al., 2003). We adjusted outcomes from crop 
model simulations to produce yields with a mean reported by local informants (kg ha-1): 3360 
for peanut (J. Marois, Researcher, North Florida Research and Education Center, Quincy, 
personal communication, October 22, 2004), 730 for cotton, and 6270 for maize (J. Smith, 
Statistician, North Florida Research and Education Center, Quincy, personal communication, 
Nov. 23, 2004).  

Crop model simulations contemplated contemporary management practices in the region of 
varieties, fertilization, and planting dates (H.E. Jowers, Co. Extension Director IV, Jackson Co. 
Extension Office, Marianna; personal communication, Oct. 28, 2004); and representative soil 
type. For peanut we used the most popular variety in the area, Georgia Green (University of 
Georgia), a Runner type market variety with medium maturity and moderate resistance to late 
tomato spotted wilt virus (TSWV) and to cylindricladium black rot (CBR). For cotton, we used a 
popular medium to full season Delta & Pine Land ® (DP) variety. And for maize we used a 
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common McCurdy 84aa, a medium to full season variety similar to brand name varieties of 
Monsanto ® (Dekalb) or Pioneer ®. 

Nitrogen fertilization was used accordingly to local information, 10 kg at the planting for peanut, 
110 kg in 2 applications for cotton, and 135 kg in 3 applications for maize.  Peanut was planted 
between mid-April and mid-June, cotton was planted between mid-April to early-May, and Maize 
was planted between mid-February and mid-April. Nine planting dates (about one-week apart) 
were included for peanut and maize and four planting dates were included for cotton. 

2.1.2. Generation of synthetic crop yields  

Limited duration of daily weather records provided only a few realizations of the ENSO impacts 
to crop yields (i.e., only 14 El Niño realizations), however a thorough assessment of climate risk 
and forecast value requires the study of a more complete account of ENSO events. Previous 
approaches have relied on the use stochastic weather generators to produce synthetic weather 
(Letson et al., 2005; Meza et al., 2003) and then use this weather data to predict agronomic and 
economic outcomes. We used a simpler approach consisting of a stochastic yield generator 
based on simulated crops yields.  

Our stochastic yield generator employed re-sampling in three steps. First, A) crop yields 
simulated by crop models were sorted within an ENSO phase and a planting date. Second, B) a 
function (logarithmic, exponential, quadratic, or linear; whichever had higher R2) was fit to the 
data. We used a mathematical function in order to avoid underestimating potential extreme 
values in the distribution. Third, C) 990 stochastic yields were generated by re-sampling a 
function. We repeated the procedure for each planting date, of each crop, in each ENSO phase.  

2.2. Economic component 

2.2.1. Generation of synthetic prices  

In order to match our yields, we stochastically generated distributions of 2970 price series for 
each crop (peanut, cotton, and maize) by simulating a multivariate distribution respecting price 
covariance among crops based on historical price variability. The procedure followed several 
steps (for more details see Letson et al., 2005, Appendix B). First, A) we obtained monthly 
average prices (Jan 1996 – Jan 2005) received by Florida farmers for peanut, cotton, and maize 
from the USDA National Agricultural Statistical Service (http://www.nass.usda.gov/fl/ 
econ/prices/) and converted them to $ Mg-1 units. B) We studied and graphed the data, 
estimated their descriptive statistics, and explored their correlation structure. C) We deflated 
prices to Jan 2005 dollars using the US Consumer Price Index. D) We de-trend the data for 
seasonal differences by estimating monthly residuals respect to their means. E) We used 
principal components analysis to decompose the matrix of price residuals into three 
uncorrelated time series of amplitudes that were separately sampled. F) The sampled values 
were combined and back transformed to reconstruct crop price residuals. G) We confirmed that 
the correlation structure of the synthetic price residuals was similar to that of the historical data 
according to Kolgomorov-Smirnov tests and that the historical price distributions were well 
reproduced according to quantile-quantile plots. And finally H) we re-introduced seasonal price 
averages for the harvesting dates of the three crops: Sep 2-Nov 6 for peanut, Sep 22-Dec 28 for 
Cotton, and Jul 1-Sep 30 for Maize. For the case of cotton, we increased its price by 18.66% to 
account for the seed value.  
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2.2.2. Production costs  

We consider variable and fixed production costs by crop into the model. Contemporary and local 
costs of production and labor requirements for the three crops were provided by the North 
Florida Research and Education Center (J. Smith & T. Hewitt, Enterprises Budgets, Quincy; 
personal communication, Nov. 23, 2004). The variable (fixed) costs for peanut, cotton, and 
maize were ($ ha-1) 1080 (344), 1122 (177), and 574 (87), respectively. 

2.2.3. Whole farm model 

We used a stochastic non-linear whole farm model to study the role of climate forecasts in 
decision making and to estimate the value of these forecasts. We solved the model to identify 
optimal decisions and to simulate annual economic outcomes by constraining the model to the 
optimal settings with and without ENSO information, and with and without Farm Programs. 

2.2.3.1. Optimal farm decisions 

We sampled 325 years of our synthetic yields and prices to find optimal land allocation 
decisions, assuming the chance of forecasting a given phase is its historical frequency (14, 35, 
and 16 for El Niño, neutral, and La Niña phases) for the period 1939-2003. The model selected 
optimal combinations of 22 possible crop managements for 70 El Niño events, 175 neutral 
years, 80 La Niña events, and the sum of all of them. 

The model maximized the expected utility (U) for one year planning period subject to land and 
labor availability (Letson et al., 2005), where utility was a power function of wealth based on a 
constant relative risk aversion Rr (Hardaker et al., 2004), Equations 1 to 4.   
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where i is the ENSO phases (1=El Niño, 2=neutral, 3=La Niña), j is the month of the 
labor constraint (1-10, February to November), m is the management alternatives, and n 
is the years for each optimization (1 to N); ∏ is income, W0 and Wf are initial and final 
wealth, q is the historical likelihood of receiving a given ENSO phase forecast, X is land 
allocation, and L is labor requirement. This model replicates similar models defined for 
Letson et al. (2005) and Messina et al. (1999) in Argentina. We constrained the model 
here to use all land each year to account for realistic crop rotations commonly used in 
the study area. Local information indicates farmers use different plots of land to rotate 
these three crops in different years (C.A. Smith, Extension Agent II, Jackson Extension 
Office, Marianna; personal communication, Nov. 12, 2004); the model does not 
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distinguish among farm fields, but accounts for size of land and management practices 
on each one of them. 

We used the MINOS5 algorithm in GAMS (Gill et al., 2000) along with a randomized procedure 
to alter starting values and assure global maxima solutions. Every solution identified land 
allocation for crop enterprises that maximized expected utility for each constant relative risk of 
aversion (Rr): 0, 0.5, 1, 2, 3, and 4, Hardaker et al. (2004, p. 102). 

2.2.3.2. Farm simulation and EVOI calculation 

We constrained the farm model to optimal land allocations found by optimizations to simulate 
net margins for 2970 years (990 for each ENSO phase) using all our synthetic yields and all our 
synthetic prices. This procedure was repeated for each constant relative risk of aversion.  

We estimated the value of the information (EVOI) by comparing the simulated net margins with 
and without forecast according to their historical proportion frequencies. To be consistent with 
precedent literature, we estimated EVOI over different planning horizons in certainty equivalent 
units (US$). 

2.3. Introduction of farm programs  

Several farm programs exist in place and directly impact agricultural production risk in the 
United States. Among them, crop insurances, disaster assistance, fixed and countercyclical 
payments, and commodity loan programs are available for farmers in Jackson County, Florida. 
In order to evaluate land allocation decisions for our three crops, we were interested in farm 
programs that depend on actual production and distinguish among commodities as is the case 
of commodity loan programs and crop insurances.  

We were not interested in disaster assistance programs, federal income taxes, and other type of 
farm program provisions (fixed and countercyclical payments) because they do not depend 
directly on actual production and farmers have limited or none control of them in their annual 
decision making. In addition, according to local information (K. Nicodemus, Rural Community 
Insurance, October 2004) only very few cases can be found for claiming disaster assistance; 
Federal income taxes have been found to influence only moderately the value of the forecast 
(Mjelde et al., 1996); and program payments are totally independent of production and farm 
decision making. 

2.3.1. Commodity loan programs 

The Federal Agriculture Improvement and Reform Act of 1996 (the 1996 FAIR Farm Act) 
initiated loan deficiency payments (LDP) programs for several crops, including cotton. The 
purpose of this LDP program is to provide producers with financial help to market their crops 
throughout the year. The LDP for a county is determined by comparing the county's loan rate 
and posted county price (PCP). If the PCP is below the loan rate, then producers are eligible for 
LDPs. The payment amount is the difference between the loan rate and the PCP 
(http://www.card.iastate.edu/ag_risk_tools/ldp/). Farm Program of LDP in Jackson County sets a 
minimum price of $1.14 kg-1 for cotton.  
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The Farm Security and Rural Investment Act of 2002 (the 2002 FSRIA Farm Act) eliminated the 
peanut “quota,” but created new forms of farm financial help for peanut growers 
(http://www.ers.usda.gov/AmberWaves/November04/features/ peanutsector.htm). Among the 
new sources of government payments is the marketing loan benefit (MLB), which entitles 
peanut growers to receive marketing assistance loans of $0.39 kg-1 on current production. Also 
the 2002 FSRIA Farm Act changed the maize MLB to $0.08 kg-1 
(http://www.ers.usda.gov/Briefing/Corn/policy.htm). In order to compare EVOI with and without 
the inclusion of Farm Programs, we applied the LDP to cotton and MLB to peanut and maize in 
our synthetically generated prices by limiting the minimums to at least the levels of the 
respective programs. In the case of cotton, we first applied the LDP and then added the value of 
the seed.  

2.3.2. Crop insurance programs 

Several crop insurance options are available. To reduce the number of decisions we used the 
most common insurance products used by Jackson County farmers in 2004 according to the 
Economic Research Service (www.ers.usda.gov). We used for peanut, multi-peril crop 
insurance (MPCI) at 70% level; for cotton crop revenue coverage (CRC) at 65% level; and for 
maize, MPCI at 50% coverage. The MPCI covers yield loss to a level selected, while CRC 
covers value loss to a selected level (yield multiplied by a price election). The price election 
selected was the maximum in each one of the cases. It was ($ kg-1) 0.3935, 1.4991, and 
0.0964 for peanut, cotton, and maize, respectively. The use of medium levels of yield coverage 
(peanut and cotton) and highest price coverage is consistent with what producers tend to insure 
(Mjelde et al., 1996). Insurance premium costs by crop were calculated by multiplying the 
premium cost by the selected planted area by crop inside the decision function of the model. 
The local premium costs were ($ ha-1) 69.88, 144.86, and 18.03 for peanut, cotton, and maize, 
respectively. 

An indemnity payment was calculated when the yield (MPCI for peanut and maize) or the value 
of the yield (CRC for cotton) was lower than the insured threshold in a determined year. The 
indemnity payment was the amount the farmer would receive in compensation to raise the 
income of the crop to the insured level. The indemnity payment was added to the income into 
the objective function by multiplying the land area by the price base and by the amount of loss. 

Results and Discussion 

1. Optimal land allocation without farm programs 

Optimal crop and management choices by ENSO phase are influenced by risk aversion. We 
present only the case of Rr =1 (Fig. 1). The proportion of crops on the farmland did not change; 
however there were favorable management practices for different ENSO phases. Later peanut 
plantings were preferred in El Niño years, while very early cotton plantings were chosen for La 
Niña phases. Medium to late maize plantings were selected for El Niño and La Niña years, but 
earlier plantings were selected during neutral years. These crop rotations are consistent with 
local information. Diversification decreased with risk aversion; e.g., only 2 management 
alternatives were selected for Rr  =4 and only 3 managements alternatives were selected for 
Rr=0, compared to 4 for Rr =1 when optimized for all years. Crop rotations resulting of the land 
allocation optimization are consistent with the ranges indicated by local informants. For Rr =0, 
0.5, and 1 the proportion of peanut, cotton, and maize were always 35, 36.7, and 28.3%; for 
Rr=2, 3, and 4 the proportion of the same crops were 0, 37.8, and 62.2%, respectively.  
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2. Optimal land allocation with farm programs 

Application of commodity loan programs (CLP) impacted only marginally in the optimal 
decisions. For Rr =1, small proportions of planting date crop selection were changed for maize 
during El Niño years and for cotton during neutral years (Fig. 1 A, B). For Rr =2, 3, and 4 the 
proportion of peanut, cotton, and maize were 0, 93.6, and 6.4%, respectively. 

Application of crop insurance programs (CIP) impacted only moderately the optimal decisions. 
For Rr =1, small proportions of plating date crop selections were changed for maize during El 
Niño years, and for peanut and cotton for neutral years (Fig. 1 A, C). For Rr =2, 3, and 4 and 
neutral years the proportion of peanut, cotton, and maize selection were 0, 93.6, 6.4%, 
respectively. 

The combined impact of CLP and CIP in the optimization of land allocation was also only 
moderate. For Rr =1, major changes occurred in the planting dates proportions for maize during 
El Niño years and for cotton and peanut for neutral years. When both programs are present, the 
proportion of crop selection for Rr  =2, 3, and 4 were as in the case of no Farm Programs. 

 

 

 

 

 

 

 

 

 

Figure 1. Optimal land allocations (%) when Rr =1. A) Without applying Farm Programs. B) 
Applying commodity loan programs (CLP). C) Applying crop insurance programs (CIP). D) 

Applying CLP and CIP. 

3. Forecast value without Farm Programs  

3.1. Forecast value and risk preferences 

We used a single 2970-year interval weighted average of ENSO-phase historical frequency to 
estimate certainty equivalent (US$ ha-1) to explore the value of the information (EVOI) and 
compare it with previous studies. Fig. 2 shows the relationship between ENSO phases, EVOI, 
and risk aversion levels. Forecast responses in Jackson County combine defensive with 
offensive risk strategies. Under normal risk aversion (Rr=1), when producers are prepared to 
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minimize income losses (defensively) and to take advantage of favorable conditions 
(offensively), the average EVOI was $2.9 ha-1, which increased to $6.6 ha-1 for El Niño events. 
The value of the information increased considerably to around $25 ha-1 for the average of all 
years when Rr>1. This was even more valuable for the case of more risk adverse farmers when 
El Niño or La Niña events were forecast ($48 ha-1). For less risk averse producers (Rr<1), 
limited increase in the value of the information was observed for La Niña events and remained 
steady for El Niño Events (Fig. 2A).  

 

Figure 2. Forecast value by ENSO phase and Rr level. Each EVOI estimated over a single 
2970-year interval. EVOI expressed in certainty equivalent units (US$ ha-1). A) Without 

applying Farm Programs. B) Applying commodity loan programs (CLP). C) Applying crop 
insurance programs (CIP). D) Applying CLP and CIP 

Following Letson et al. (2005), small-scale Jackson County farmers, like the representative 
farmer for this study, are risk averse farmers that would use the forecast offensively by being 
more responsive to La Niña or El Niño events to take advantage of likely favorable conditions. 
Conversely, large farmers would use the forecast defensively by being more responsive to La 
Niña phases to avoid losses during these events. For all years, EVOI is $2.4 ha-1 at Rr=0 and it 
is maximized at $24.6 ha-1 at Rr=2 (similar results were found by Letson et al., 2005, in 
Pergamino, Argentina). Our findings of EVOI values, which show the best opportunity of 
forecasts for highly risk averse producers and encourages offensive forecast use, is consistent 
with previous studies (Letson et al., 2005; Messina et al., 1999; Mjelde et al, 1998; and Katz´s 
webpage (www.esig.ucar.edu/HP_rick/agriculture.html).                                                                                        

Even a perfect forecast provides a distribution of possible weather outcomes, which will impact 
crop yields and together with uncertain prices will impact economic returns. A frequency 
distribution of EVOI estimates is presented in Fig. 3. EVOI range and likelihood are of practical 
importance because forecast users may want to know the range and likelihood of EVOI as well 
as the likelihood of negative EVOI estimates. The probability of negative EVOI estimate in Fig. 3 
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is 831 out of 2970 (28%), which is not negligible. Negative EVOI occurs because of the joint 
effect of weather and prices. 
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Figure 3. Frequency distribution of EVOI estimates in 100-year horizons for the case of Rr =1. 
Mean = $4.39 ha-1 and 95% confidence interval = $[3.48, 5.30] ha-1 

4. Forecast value with Farm Programs 

4.1. Forecast value with commodity loan programs 

We followed similar analyses to the EVOI estimates when CLP were applied. Fig. 2B shows the 
relationship between ENSO phases, EVOI and Rr when CLP are included. Overall the value of 
the information is greatly reduced when CLP are applied. Under normal risk aversion (Rr=1), the 
average EVOI was slightly higher than not using CLP, $3.8 ha-1, which increased to $6.8  ha-1 

for El Niño events. This was the highest value of the information. For higher risk averse levels 
(Rr > 1), the value of the information was substantially lower than when not using CLP, of the 
order of $1.5 ha-1 for average of all years. The EVOI was small but positive for all years; 
however it was zero for La Niña years and Rr=1 and for El Niño and neutral years and Rr > 1 
because there were no differences between the optimal settings when using forecast 
information. 

While for less risk averse farmers (Rr < 1) a defensive response could have slightly better EVOIs 
than not using CLP, for more risk averse producers (Rr > 1) the value of the information is 
substantially lower for the case of using CLP. When using CLP, less risk averse farmers 
(usually large farmers) would slightly benefit with defensive responses during El Niño events, 
however more risk averse farmers (usually small farmers) would not benefit by using ENSO 
forecast. 

4.2. Forecast value with crop insurance programs 

We followed similar analyses to the EVOI estimates when CIP were applied. Fig. 2C shows the 
relationship between ENSO phases, EVOI and Rr when CIP are included. When CIP is applied, 
the overall value of the information is greatly reduced to even negative values. However, the 
EVOI for all years under less or normal risk aversion levels was slightly increased to more than 
$5.6 ha-1. EVOI was negative ($-0.5 ha-1) for all years and Rr > 2. This was because, EVOI was 
highly negative (<$-11 ha-1) when neutral years, even when EVOI estimates for El Niño years 
and  were moderately high (>$ 22 ha-1, still under CIP conditions high risk averse farmers could 
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benefit of potential favorable conditions when El Niño years forecast). Over concerned optimal 
decisions of highly risk averse decision makers create a great difference in the potential gains.  

Negative EVOI is possible as reported in previous studies. Negative EVOI occurs because intra-
phase variability: e.g., optimization selected a crop combination based on a sample of weather 
realization and the actual weather occurrence differed in ways that impacted income. Moreover, 
the incidence of negative EVOI estimates increased when stochastic prices (ENSO 
independent) are non-favorable for a defined enterprise proposition. Under high risk aversion 
levels, enterprises with less variable returns are chosen over enterprises with overall higher 
returns. It was consistent over all optimizations that peanut was not selected for high risk 
aversion levels even though it was the most profitable enterprise. Also, remember that, we 
sampled 325 years for our optimization and then constrained the model to the optimal settings. 
It happened that use of forecast could be a losing proposition when extreme prices and weather 
interact. 

High frequency and overall higher negative values found in this study (including the case of not 
using farm programs) differ from previous studies. We attempt to explain it based on specific 
conditions of our Jackson farm system. Jackson County producers are required to use all their 
land with limited labor available. This fact makes producers select even negative enterprises, in 
order to use labor as efficiently as possible. For example, cotton was a negative enterprise for 
all ENSO phases and no farm programs, but it was always selected because it was needed in 
the natural rotation of crops as described by local informants. 

4.3. Forecast value with commodity loan and crop insurance programs 

We included both CLP and CIP at the same time and followed similar analyses to the EVOI 
estimates. Fig. 2D shows the relationship between ENSO phases, EVOI and Rr when CLP and 
CIP are included. Although the inclusion of both farm programs decreases the overall value of 
the information, it also buffers the occurrence of negative values as when applied only CIP. The 
EVOI for all years was negative for Rr >1 varying between $-0.1 and $-0.9 ha-1. The value of the 
information was positive, but marginal for La Niña years and for Rr >1. It was always positive for 
El Niño years and it had moderate values ($ 26 ha-1) for Rr >1, indicating that highly risk averse 
farmers would still benefit of using offensively El Niño forecast by taking advantage of potential 
advantageous situations when CLP and CIP are in place. 

Conclusions  
Forecast value is inherently probabilistic even for perfect ENSO phase forecast and must be 
estimated and communicated as dispersion rather than a single point estimate. Our numerous 
synthetic prices and yields allowed us to generate probabilistic distributions of the value of the 
forecasts. Each estimate we report is associated with its probability of occurrence. Within these 
distributions, negative value of the forecast information exists and is not negligible (Letson et al., 
2005). 

As hypothesized, farm programs substantially impact the value of forecasts. Farm programs as 
commodity loan programs and crop insurance programs reduce farm income variability and the 
riskiness of the farm enterprises. Consequently, the inclusion of CLP and CIP tend to reduce the 
overall value of the climate information and increase the likelihood of negative values of the 
information. However, depending upon the risk aversion level of the farmer it could vary 
considerably. Decision making institutions and regulations such as farm programs will always 
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affect farm riskiness and farmers’ decisions. They should be included in the analyses of 
decisions. 
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