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The ENSO phenomenon, more popularly known as El Niño and La Niña, has an 

effect on agricultural production, particularly in Florida.  Knowledge of the impact of 

ENSO on tomatoes is important because the fresh market tomato industry has a farm 

value of more than $1 billion in the United States.  Florida produces the majority of the 

nation’s fresh tomatoes, accounting for one third of the state’s approximate $1.33 billion 

in cash receipts for vegetables.  The effects of seasonal climate variation resulting from 

ENSO on Florida tomato prices have not been quantitatively measured. 

The overall objective of this research is to determine if ENSO seasonal climate 

variation has an impact on Florida tomato prices.  Because scientists are better able to 

predict ENSO, growers could use this information to modify their practices to maximize 

profit.  An empirical model composed of four simultaneous equations is used to 

determine the significance ENSO phases have on tomato yield and price.  The empirical 

results indicate that the El Niño and La Niña variables are not significantly different from 



x 

zero.  Therefore it can be concluded that ENSO has no impact on yield which indicates 

that prices are not affected by ENSO.  This research found no relationship of El Niño and 

La Niña phases on Florida tomato prices indicating that improved forecasts of ENSO 

would have no value to farmers. 
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CHAPTER 1 
INTRODUCTION 

1.1 Introduction 

Seasonal climate variations can have a global impact from agricultural production 

to the electric bill.  Strong effects from seasonal climate variations are very noticeable in 

the southeastern United States, especially in Florida (Hansen et al. 1998).  In 1997, North 

Central Florida farmers fought flood-ridden fields causing much devastation to their 

crops.  Instead of getting relief from the rains the following year, these same farmers 

fought drought and warmer than average temperatures (Arndorfer 1998).  These farmers 

were facing the El Niño and La Niña phases of the seasonal climate variation 

phenomenon known as the El Niño Southern Oscillation or ENSO. 

Changes in the sea surface temperature of the equatorial Pacific Ocean affect the 

atmosphere and cause seasonal climate variations.  These variations came to be known as 

ENSO.  ENSO is a system of interactions between the Pacific Ocean and the atmosphere 

around it (Soreide and McPhaden 2005).  There are three ENSO phases known as El 

Niño, La Niña and Neutral.  ENSO effects are noticeable in the southeast United States, 

though its impacts are most prominent in Peninsular Florida.  During the winter months, 

January, February, and March (Table 1-1) ENSO effects are most noticeable, though the 

effects can be noticed during the months of both spring (April, May, June), and fall 

(October, November, December).  During an El Niño year, Florida faces wetter and 

cooler fall and winter conditions than during a Neutral year.  Increased rainfall during an 

El Niño can damage root systems resulting in reduced yields, while the lower daytime 



2 

 

temperature can slow crop development (Hansen et al. 1998).  Generally, opposite effects 

such as dryer and warmer fall and winter conditions than an El Niño are felt during La 

Niña years.   

Table 1-1. ENSO impacts across the southeast United States.   
El Niño/La Niña Impacts Across the Southeast U.S.  

Seasons  
Phase  Region  

Oct-Dec Jan-Mar Apr-Jun Jul-Sep 
Peninsular 
Florida Wet & cool Very wet & 

cool 
Slightly 
dry 

Slightly dry 
to no impact 

Tri-State Region Wet Wet Slightly 
wet No impact 

Western 
Panhandle No impact Wet Slightly 

dry No impact 

El 
Niño 

Central and 
North Ala. & Ga. No impact No impact No 

impact Slightly dry 

Peninsular 
Florida 

Dry & 
slightly 
warm 

Very dry & 
warm 

Slightly 
wet Slightly cool 

Tri-State Region Slightly dry Dry Dry No impact 
Western 
Panhandle Slightly dry Dry Dry No impact 

La 
Niña 

Central and 
North Ala. & Ga. Dry 

Dry in the 
south, wet in 
NW Ala. 

No 
impact 

Wet in NW 
Ala. 

Neutral All Regions No impact No impact No 
impact No impact 

(Source: Southeast Climate Consortium 
http://www.agclimate.org/Development/apps/agClimate/controller/perl/agClimate.pl, last 
accessed April 30, 2006) 
 
Planting dates for fresh tomatoes in Florida range from mid-July through mid-March, and 

harvesting dates range from mid-October through mid-June.  The largest production 

occurs from November through January (Lucier 2004).  The Florida fresh tomato 

industry is affected by variations in temperature and precipitation.  Fresh tomatoes 

require specific variations in temperature and precipitation to be of optimum quality.  

http://www.agclimate.org/Development/apps/agClimate/controller/perl/agClimate.pl
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Florida fresh tomatoes are grown across the state, though the planting and harvesting 

dates varies by season.  During the summer months (July, August, September) the 

planting of fresh Florida tomatoes occurs in north Florida and progresses southwards as 

temperatures decrease into the months of both fall (October, November, December) and 

winter (January, February, March).  Fresh tomatoes in Florida are generally not planted 

during spring months because conditions are not favorable (Table 1-2). 

Table 1-2. Planting dates in months for Florida fresh tomatoes by region. 
 

 
Past research has determined that weather and climate have an economic impact on 

agriculture.  More recent research has shown that the economic value of ENSO on the 

U.S. agriculture, forestry, and fishery sectors at $200 million per year with the majority 

going towards agriculture (Adams et al. 1995).   To determine whether ENSO seasonal 

climate variations affect specific crops, researchers including Solow et al. (1998) and 

Adams et al. (1995) used plant biophysical simulation models and included crops in 

Florida in their data.  Both studies found that ENSO impacted crop production, though 

both models assumed perfect forecasts, an unlikely scenario.  Hansen et al. (1998) also 

analyzed the response of specific crops to ENSO in several states including Florida.  

Breuer et al. (2004) examined the use crop models by other researchers to determine the 

effects of planting dates on tomato yield when influenced by ENSO.  As technology and 

knowledge of ENSO seasonal climate variation improves, researchers are better able to 

predict ENSO events.  By being able to more accurately forecast ENSO events, it has 

 J F M A M J J A S O N D
NORTH 
FLORIDA                         
CENTRAL 
FLORIDA                         
SOUTH 
FLORIDA                         
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been thought that farmers would be able to adjust input costs and vary growing decisions 

that impact yield. 

Knowledge of the impact of ENSO on tomatoes is important because the fresh 

market tomato industry has a farm value of more than $1 billion in the United States.  

Florida produces the majority of the nation’s fresh tomatoes making tomatoes one of the 

highest valued crops in Florida, accounting for one third of the state’s approximate $1.33 

billion cash receipts for vegetables (Lucier 2004 and Mongiovi 2005).  Fresh tomatoes in 

Florida are harvested when they are fully grown and still green (Sargent 1998).  The 

majority of Florida tomatoes are grown for the fresh market.  Fresh market tomatoes are 

generally sold on the open market and therefore are not under contract (Lucier 2004).  

Because of this, fresh market tomatoes have more variation in price than contract 

vegetables.  Though much research has been done showing the effects of ENSO on yield 

and overall economic value, no significant research has been done to study the impacts of 

ENSO on Florida tomato prices. 

1.2 Researchable Problem 

The effects of seasonal climate variation resulting from ENSO on Florida tomato 

prices have not been quantitatively measured.  This study will measure the effect of 

ENSO seasonal climate variation on Florida fresh tomato prices.  Because scientists are 

better able to predict ENSO, growers could use this information to modify their practices 

in order to maximize profit.   

1.3 Objectives 

Past research has indicated that an economic value can be assigned to ENSO and its 

impact on agriculture.  The overall objective of this research is to determine if ENSO 
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seasonal climate variation has an impact on Florida tomato prices.  The specific 

objectives are to 

• Complete a literature review on ENSO and its effects on crop production and value 
to agriculture. 

• Build an econometric supply and demand model of Florida fresh tomatoes. 
• Obtain supply and demand data for the supply and demand model of Florida 

tomatoes. 
• Determine if a relationship exists between ENSO events and Florida tomato prices. 
• Determine the impact of ENSO on Florida tomato prices. 
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CHAPTER 2 
SEASONAL CLIMATE VARIATION 

2.1 Weather and Climate 

For this study it is important to distinguish between weather and seasonal climate.  

Weather is the day to day variation in temperature, humidity, wind speed, and 

precipitation.  It affects daily activities from what clothes will be worn to whether or not 

to irrigate.  Using computer models, weather forecasters use the atmospheric behavior to 

determine weather patterns for no more than 2 weeks into the future (Mjelde et al. 1998).  

Seasonal climate on the other hand, is the variation of average weather patterns over time 

due to global conditions including ocean temperatures (O’Brien et al. 1999).  Seasonal 

climate can be forecasted four to six months ahead with improved technology (Green 

1997).  Besides having an impact on human comfort levels, climate fluctuations can 

influence productivity, particularly on the agricultural and forestry industries (O’Brien et 

al. 1999). 

2.2 El Niño Southern Oscillation (ENSO) 

ENSO or the El Niño Southern Oscillation is a system of interactions between the 

equatorial Pacific Ocean and the atmosphere around it (Soreide and McPhaden 2005).  In 

the 1500s fisherman off the coast of Peru and Ecuador began to notice unusually warm 

water pooling occasionally around the winter months (O’Brien et al. 1999).  Usually 

winter months were a vacation period for the fisherman because the waters would warm 

to a temperature unfavorable for fish.  Fisherman noticed unusually warm waters during 

certain years which caused the warm periods to extend into early summer.  Because this 



7 

 

unusually warm water began around Christmas time, the fisherman named the 

phenomenon “El Niño” or the Christ child (Wallace and Vogel 1994). 

In the 1920s Sir Gilbert Walker, a British scientist, studied the Asian monsoons in 

India.  He wanted to determine a method to predict the monsoons.  After reviewing world 

weather records, he noticed a connection between barometer readings in the eastern and 

western sides of the Pacific Ocean (Wallace and Vogel 1994).  When pressure rose in the 

east, he observed that pressure fell in the west, and when pressure fell in the east it rose in 

the west (Wallace and Vogel 1994).  Sir Gilbert Walker bestowed the phenomenon with 

the title Southern Oscillation because of its seesaw-like characteristic.   

Walker also noticed that monsoon seasons occurred at the same time as severe 

droughts in Australia, Indonesia, and parts of Africa (Wallace and Vogel 1994).  Though 

many of his colleagues were skeptical of Walker’s findings, he predicted that an 

explanation could be found with an understanding of wind patterns.  In the 1960s, Jacob 

Bjerknes, a professor at the University of California, was the first researcher to notice a 

correlation between the unusually warm sea surface temperatures and unusual rainfall 

associated with weak easterlies (Wallace and Vogel 1994).  This information provided 

the key to relate these warm waters and Walker’s Southern Oscillation pressure changes.  

ENSO became the name for the disruption of the normal atmospheric and oceanic 

systems in the Pacific Ocean which could have impact on weather around the world 

(Soreide and McPhaden 2005).  The warm phase of ENSO is named El Niño while the 

cool phase of ENSO is named La Niña. 

The Pacific Ocean waters associated with ENSO are measured by a system of 

buoys and satellites that measure temperatures, currents, and winds in the equatorial band 
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off the coast of Peru and Ecuador and extend to Indonesia and Australia in the southern 

hemisphere (Soreide and McPhaden 2005).  The Japan Meteorological Agency has an 

index which shows monthly sea surface temperature anomalies (JMA 1991).  This index 

is used by many researchers to classify what ENSO phase is occurring, i.e., El Niño, La 

Niña, or Neutral.  El Niño and La Niña occur approximately every 2 to 7 years.  The 

duration of the phase is generally one year and defined as beginning in October and 

ending in September.  This definition is intentionally created to seize the peak months of 

the phase which occur during December and January (O’Brien et al. 1999). 

2.3 Neutral 

Walker was correct in his prediction that wind patterns would play a vital role in 

his Southern Oscillation theory.  During a normal or Neutral year (Figure 2-1), tropical 

trade winds blow from east to west pooling warm water in the western Pacific Ocean off 

the coast of Indonesia and Australia (O’Brien et al. 1999).  Figure 2-1 shows the Pacific 

Ocean water temperature in degrees Celsius during a given day in December of 1993. 

Figure 2-1. Sea surface tempe
Source: NOAA (h
Last accessed Oct

n

100ºE        140ºE   
Pacific Ocea
 

 

ratures during a Neutral year in the Pacific Ocean.    
ttp://www.pmel.noaa.gov/tao/elnino/el-nino-story.html , 
ober 12th, 2005) 

ºC 

     180º         140ºW       100ºW      60ºW 
Degrees of Longitude 

http://www.pmel.noaa.gov/tao/elnino/el-nino-story.html
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The eastern winds stir up cool and nutrient rich water towards the surface in the 

eastern equatorial Pacific Ocean off the coasts of Peru and Ecuador.  The warm water 

from the western Pacific Ocean creates a vigorous hydrological cycle with tropical storms 

that send atmospheric waves and disturbances around the globe.  These disturbances are 

evenly distributed by high altitude winds. 

2.4 El Niño 

During an El Niño year, the tropical trade winds slowly die down in the central and 

western Pacific causing the warm water to move back towards the South American 

coast(Figure 2-2), resulting in sea surface temperatures that are much warmer than usual, 

(O’Brien et al. 1999).   

 

Figure 2-2. Monthly sea surface temperatures during an El Niño year in the Pacific 
Ocean.  Source: NOAA (http://www.pmel.noaa.gov/tao/elnino/el-nino-
story.html , Last accessed October 12th, 2005) 

This unusual increase in water temperature must occur for a minimum of six 

months with an average sea surface temperature of 0.5ºC higher than normal for the 

Japan Meteorological Agency or JMA to classify the disturbance as El Niño in their 

index (O’Brien et al. 1999).  Because trade winds are weaker than usual, the cold nutrient 

Pacific Ocean

ºC 

Degrees of Longitude

http://www.pmel.noaa.gov/tao/elnino/el-nino-story.html
http://www.pmel.noaa.gov/tao/elnino/el-nino-story.html
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rich water is unable to surface.  Storms follow the warm waters in the east which result in 

flooding in areas of Peru and Ecuador while Indonesia and Australia experience droughts.  

In addition, the warm waters in the Pacific disturb the global atmospheric circulation 

which alters weather in regions around the globe (Soreide and McPhaden 2005).  In the 

United States, the warm waters of the Pacific Ocean strengthen the jet stream and pull it 

further south guiding storms from California into Florida (Figure 2-3).  This causes 

cooler and wetter winters in Florida.  Greater than average rainfall amounts and cooler 

than average temperature are seen in Florida.   

 

Figure 2-3. Typical weather patterns observed in North America in January, February, 
and March during an El Niño year.  Source: NOAA 
(http://www.pmel.noaa.gov/tao/elnino/el-nino-story.html , Last accessed 
October 12th, 2005) 

During an El Niño phase, the average winter rainfall in Florida increases by more than 

30% compared to a Neutral year.  Winter temperatures during an El Niño in Florida are 

on average 2ºF to 3ºF cooler than Neutral winter temperatures (O’Brien et al. 1999). 

2.5 La Niña 

During a La Niña year stronger than normal trade winds occur (Figure 2-4), stirring 

up the cold water below the sea resulting in cooler than normal sea temperatures in the 

eastern Pacific Ocean (O’Brien et al. 1999).   

Pacific Ocean

http://www.pmel.noaa.gov/tao/elnino/el-nino-story.html
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Figure 2-4. Monthly sea surface temperatures (ºC) during a La Niña year in the Pacific 
Ocean.  Source: NOAA (http://www.pmel.noaa.gov/tao/elnino/el-nino-
story.html , Last accessed October 12th, 2005) 

This unusual decrease in water temperature must occur for a minimum of six months with 

an average sea surface temperature of 0.5ºC lower than normal for the Japan 

Meteorological Agency (JMA) to classify the disturbance as La Niña in their index 

(O’Brien et al. 1999).  Because trade winds are stronger than usual, the cold and nutrient 

rich water is able to rise to the surface of the Pacific Ocean.  This causes Indonesia and 

Australia to experience increased rainfall while the western coast of South America 

experiences dryer than normal conditions (Soreide and McPhaden 2005), exactly 

opposite effects of El Niño conditions.   

The cooler water from the Pacific Ocean weakens the jet stream and pulls it 

northward over the United States (Figure 2-5).  This northward movement prevents 

storms from easily moving into Florida.  This causes warmer and dryer winters in 

Florida.  Less than average rainfall amounts and warmer than average temperatures are 

seen in Florida (O’Brien et al. 1999).  During a La Niña phase, the average fall, winter, 

and spring rainfall in Florida decreases by 10% to 30% compared to a Neutral year.  

Pacific Ocean

ºC

100ºE         140ºE            180º             140ºW          100ºW         60ºW 
Degrees of Longitude

http://www.pmel.noaa.gov/tao/elnino/el-nino-story.html
http://www.pmel.noaa.gov/tao/elnino/el-nino-story.html
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Winter temperatures in Florida during a La Niña are on average 2ºF to 4ºF warmer than a 

Neutral winter (O’Brien 1999). 

 

Figure 2-5. Typical weather patterns observed in North America in January, February, 
and March during a La Niña year. (Source: NOAA 
http://www.pmel.noaa.gov/tao/elnino/el-nino-story.html, Last accessed 
October 12th, 2005)  

2.6 Summary 

El Niño and La Niña have vital roles in determining climate variations around the 

globe.  These climate variations have an effect on weather that varies in strength by 

regions.  Strong relationships have been seen in the southeastern United States (Mjelde et 

al. 1998).  In Florida, average precipitation and temperature vary significantly depending 

on the ENSO phase.  Though average winter temperature decreases in Florida during an 

El Niño, 11 out of 12 major freezes in the last century in central Florida occurred during a 

Neutral phase (Jagtap et al. 2002).  El Niño and La Niña phases are not identical in 

strength year to year.  Most of the climate effects caused by El Niño and La Niña are 

strongest during the winter season but are also noticed in other months.   

Pacific Ocean

http://www.pmel.noaa.gov/tao/elnino/el-nino-story.html
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CHAPTER 3 
REVIEW OF LITERATURE 

3.1 Introduction 

This chapter presents a summary of the major topics taken into consideration for 

this study.  Past research has determined an economic value exists between agriculture 

and weather forecasts while other research has attempted to establish an exact value.  

More advanced research has begun to examine not just weather forecasts, but has 

ventured into seasonal climate forecasts and more specifically, the ENSO phenomenon.  

Researchers have begun to explore the ENSO signal and strength and its relevance to 

agriculture production and price. 

3.2 Weather Forecasts and Input Decisions 

3.2.1 Value of Weather Forecasts to a Crop 

In theory, perfectly forecast weather would greatly aid growers allowing them to 

optimize crop output and ultimately profit.  Unfortunately, meteorologists are unable to 

perfectly forecast weather.  This has led researchers to question if significantly more 

accurate weather forecasts would help growers. 

Raisin growers in California place significant value on weather forecasts during the 

months of September and October when their crop is particularly vulnerable to rain.  

They require dry conditions during these months to dry the grapes.  In 1963, Lave wanted 

to determine whether more accurate weather forecasts would prove to be beneficial to 

California raisin growers, both on a microeconomic and a macroeconomic level.  On the 
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microeconomic level, Lave (1963) analyzed information relating to a single grower and 

examined the entire raisin industry on the macroeconomic level.   

In order to determine the quantitative effect of weather on raisin production, Lave 

(1963) fitted a supply curve for the raisin industry.  He then created a relationship 

between the quantity of raisins dried in any given year, the number of degree days in any 

given growing season, the price of raisins two and three seasons before and a random 

error term.  The number of degree days is a measure to determine the best use of grapes 

in a region during a growing season.  A degree day for raisin grapes is the mean 

temperature in a day minus 50ºF.  Raisin grapes require 3,000 degree days to be of 

optimal quality.  The sum of degree days within an ideal season would be 3,000 degrees.  

Lave (1963) used the prices two and three seasons before because a new grapevine takes 

two to three years to mature.  Lave (1963) then fitted the equation by least squares and 

ran a Durbin-Watson test.  He found the data to be consistent with the hypothesis and 

noted a strong dependence on weather.  Lave’s (1963) supply equation showed that an 

additional degree day would result in the production of a statistically significant increase 

in pounds of raisins.  Thus, Lave (1963) concluded that a grower could increase profits if 

weather could accurately be forecast.  With a perfect forecast, a grower could optimize 

yield and maximize profit. 

Because weather cannot be controlled nor accurately predicted, growers must 

gamble.  Individual growers must decide when and how much to plant, when to harvest, 

and whether to sell fresh or dried grapes.  Using a component of game theory, Lave 

(1963) used a decision matrix which relates the grower’s actions to the related payoff to 

that action.  Thus, each grower is playing a game with nature.  Growers are given two 
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main options of either fully cropping or under cropping and then must decide whether to 

pick their grapes to dry for raisins, sell the grapes to wineries for crushing, or pick the 

grapes when ripe regardless of weather forecasts.  The decision matrix shows that 

growers will always have an advantage if they fully crop and prepare to pick the grapes 

for crushing.  In addition, the matrix shows that an advanced forecast of three weeks 

holds greater value to growers than no forecast, but does not provide an exact value.  To 

further investigate his conclusions, Lave (1963) used a game tree based on the growers’ 

need to make significant decisions once the grapes are planted.  The game tree branches 

out with various paths the grower may take and assigns an expected value to the grower 

based on rain probabilities.  Lave (1963) concluded that with a three week advanced 

forecast of rain, growers could optimize their profit thus placing a significant value on 

more accurate weather forecasts. 

Now that Lave (1963) had established that weather had a value for a single raisin 

grower, he wanted to see if improved weather forecast information could benefit the 

entire raisin industry.  If weather conditions were poor and all farmers chose to sell their 

grapes for crushing, the drastic supply increase to wineries would result in a significant 

decrease in price.  Because production costs in grapes have minimal variability and are 

not affected by the weather, profit must be determined by changes in revenue.  Lave 

(1963) estimated a demand curve to determine the elasticity of demand.  The inelasticity 

of the demand showed that an increase in supply (i.e., a shift to the right) would decrease 

profits to the growers. 

Lave (1963) concluded that while improved weather forecasts benefit an exclusive 

grower, it does not necessarily benefit a collection of growers.  Significantly improved 
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weather forecasts and the addition of government intervention could possibly allow 

farmers to grow alternate crops on the grape land and attempt to increase profits. 

3.2.2 Weather Forecasts and Markets 

Lave (1963) concluded that while improved weather forecasts could increase raisin 

supply, it would subsequently decrease raisin price, showing that the raisin industry as a 

whole would not benefit from improved weather forecasts.  Lave (1963) did not discuss 

the actions producers would follow with this dilemma caused by improved forecasts.  In 

1990, Babcock wanted to determine how the value of more accurate forecasts changed 

when farmers acted independently.  Babcock (1990) assumed each farmer’s output would 

be small enough as to not influence market price.  By assuming rational expectations of 

an individual farmer, he hypothesized that individual farmers would not stray from what 

was beneficial to all farmers, meaning no farmer would produce sub optimally (Babcock 

1990).  To test his hypothesis, Babcock (1990) created the following production function 

(3.1) ( )wxfy ,=  

where y represented the yield per acre; x is a variable input; and w as a stochastic weather 

input that can assume the values gw  or bw , where the variable gw is future weather and 

bw is weather that actually happens.  He assumed that a “forecaster is ‘correct’ in that 

gw occurs 60% of the time when the forecaster says that the probability of receiving gw  

is 60%” (Babcock 1990, p.64).  He then set up an objective function and first order 

condition for a specific forecasted probability and assumed that farmers would not focus 

on the change in output price that could occur as a result of their input decisions because 

farmers have a perfectly elastic demand curve. 
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To determine the input use and resulting supply changes with more accurate 

forecasts, Babcock (1990) examined the production and demand functions and expected 

profit effects.  When demand is elastic, expected revenue for farmers is greater with a 

large supply at a lower price than that of a low supply with high prices.  For an inelastic 

demand, expected revenue is less for a large supply at a lower price than a smaller supply 

with a high price.   

Babcock (1990) then determined the marginal value of information based on both 

elastic and inelastic demands.  He concluded that improved forecast accuracy in an elastic 

demand curve increases the marginal value of information while an inelastic demand 

curve actually results in a decrease in the marginal value of information (Babcock 1990).  

Babcock (1990) concluded that individual farmers are better off using all available 

weather forecasts, while collectively farmers may be worse off due to declining prices 

caused by higher supplies.  Based on his conclusions, Babcock (1990) assumed that if 

farmers in an industry discussed whether or not to use improved forecasts they would 

choose against it (Babcock 1990). 

3.2.3 Variable Input Application and Weather 

Though Babcock (1990) concluded that farmers in an industry would not use 

improved forecasts, Roberts et al. (2002), among other objectives, wanted to determine if 

a financial benefit existed whether expected rainfall equaled actual rainfall or not when 

using variable rate input application technology for applying nitrogen to corn fields.  

They also wanted to determine if a difference in net revenue existed between variable and 

uniform input application rate technology when actual rainfall was different from 

expected rainfall.  Several studies have been done in the past assessing the value of both 

precision farming and of variable rate input application technology, but none have 
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examined the effects of weather patterns on the two.  Weather patterns can greatly affect 

yield in rain fed agriculture.  For example, rainfall affects the yield response to nitrogen.  

Based on expected rainfall, farmers could potentially optimize not only nitrogen 

application costs, but could potentially increase profit, and decrease nitrogen lost to the 

environment.  In this case, expected rainfall is referring to what farmers expect will 

happen based on past average history.   

Roberts et al. (2002) used two profit functions to determine the optimal return 

when applying nitrogen for both variable and uniform input application rate technology.  

Using the Environmental Policy Integrated Climate crop growth model, data for corn 

yields and nitrogen loss were created for a time span of 20 years over three management 

zones.  Three weather scenarios were created for the model using monthly rainfall and 

temperature data from a weather station.  The first rainfall scenario used average monthly 

rainfall measures, the second scenario decreased average monthly rainfall measures by a 

0.5 standard deviation, and the third scenario decreased average monthly rainfall 

measures by one standard deviation.  Roberts et al. (2002) did not find it necessary to 

include a scenario for above average rainfall measures because they found an increase in 

rainfall did not significantly impact yields. 

The results showed that the lower average rainfall in scenario two compared to 

scenario one did not significantly decrease corn yields.  The lowest average rainfall of 

scenario three decreased corn yields more than scenario two.  When expected rainfall 

equaled the actual rainfall, variable rate input application technology was more profitable 

than uniform rate technology.  More nitrogen was applied with variable rate input 

application technology than with uniform rate technology, but the nitrogen was more 
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efficiently utilized by the crops, resulting in less nitrogen being lost to the environment.  

When less than average rainfall occurred, returns on variable rate input application 

technology was greater than when average rainfall was expected and actually occurred.  

Less nitrogen was lost while using variable rate technology, showing that as in the first 

scenario, nitrogen was more efficiently used.  The results also showed that while yield 

levels did not significantly increase or decrease, a difference in nitrogen cost was 

observed.  If rainfall scenario one was expected and actually occurred, growers would be 

better off to use variable rate input application technology due to its more efficient use. 

Overall, Roberts et al. (2002) concluded that farmers would be better off using 

variable rate input application technology.  Less nitrogen is lost, reducing input costs 

which aids in increasing profit.  Roberts et al. (2002) did not specifically examine ENSO 

climate effects; they introduced the idea by investigating rainfall expectations. 

3.2.4 Economics and Weather Forecast 

Though predated from the now current distinction between seasonal climate 

variability and weather, Sonka et al. (1986) wanted to determine whether unusual weather 

occurrences were a factor in economic uncertainty during the past two decades.  

Recognizing the arguments that improved weather forecasts were necessary, they wanted 

to determine if decision makers would use this improved information making it 

economically valuable.  To determine whether economic performance would in fact 

increase with more accurately forecasted weather information, they examined corn 

production in Illinois. 

In order for an improvement in weather forecasting to be beneficial to any sector, 

the sector must be able to accommodate any changes in the weather with production 

alternatives.  When dealing with the agricultural sector this would imply the ability to 
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either vary inputs to optimize yield for any given crop for specific weather forecasts or 

substitute crops.  Generally, inputs for production are fixed assuming average weather 

conditions.  If producers used weather forecasts to their advantage, they could more 

accurately use inputs, possibly minimizing production costs.  If so, then there is value to 

improved weather forecasts. 

Using the corn data from Illinois, Sonka et al. (1986) examined the bushels per acre 

and the level of nitrogen applied from 1971 until 1983.  They noticed a significant 

difference of approximately 115 bushels per acre of corn in 1982 compared to 

approximately 80 bushels in 1983.  Analyzing past weather data indicated favorable 

weather conditions for corn in 1982 and poor weather conditions in 1983.  Sonka et al. 

(1986) analyzed the amount of fertilizer applied during both the 1982 and 1983 growing 

seasons, and found a positive relationship between additional fertilizer and yield in 1982, 

but not in 1983.  They concluded that farmers would have made more efficient use of 

fertilizer if forecasts had been used (Sonka et al. 1986). 

To determine the usefulness of weather information using the corn industry, Sonka 

et al. (1986) followed three steps.  To begin, they identified the most weather sensitive 

periods during corn production.  They then wanted to determine if growers would adjust 

input decisions more efficiently if more accurate forecasts were known at these sensitive 

growing stages.  This was followed by creating and testing their hypotheses on factors 

that affected production decisions (Sonka et al. 1986).  Important weather parameters for 

growers including rainfall, temperature, evapotransporation, solar radiation, and wind 

speed for each growth stage during specific time periods were listed.  In a separate table 

the decision time period and production choices were shown.  By comparing the two 
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tables, Sonka et al. (1986) thought decision makers would be able to use forecasts to 

efficiently and continually make production input decisions to maximize yield (Sonka et 

al. 1986). 

Sonka et al. (1986) stressed the need for further research to be conducted including 

finding correlations between the value of weather forecasts and economic conditions.  

They concluded that for weather and climate information to be useful, it must be 

presented in a manner that decision makers will both understand and have the ability to 

implement the changes to their advantage. 

3.2.5 Production Functions and Perfect Weather Forecasts 

Cotton yields in the Texas High Plains are influenced by many factors including 

irrigation rates, fertilization methods and climate variability (Britt et al. 2002).  In order 

to maximize profit, it is necessary for growers to obtain and utilize all available 

information concerning these factors.  Britt et al. (2002) were interested in determining 

the possibility of increasing profits and decreasing risk to growers by evaluating six 

equations that would simultaneously show any relationships between input decisions and 

cotton output in the Texas High Plains categorized within three temperature and rainfall 

patterns (Britt et al. 2002). 

To begin, they set up a simple theoretical model 

(3.2) ( )21 ,,, XXHURFY = ,  

(3.3) )(QPRPR = , and 

(3.4) ),,( 21 XXHURQQ =  
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where Y is lint yield; R is a function of rainfall; HU is heat units; X1 and X2 are two 

variable inputs; PR is the quality premium per unit of lint yield; and Q is quality.  They 

then set up a profit function per unit of lint yield 

(3.5) ( ) FCXRXRYPRP −−−+=Π 2211 , 

where P is the price per unit of lint; PR is the quality premium per unit of lint; R1 is the 

cost per unit of 1X  which is irrigation water.  R2 is the cost per unit of 2X which is 

fertilizer use, and FC is the fixed costs.  To obtain the maximum profit, first order 

conditions were taken.  The resulting equation showed that input use decisions resulted in 

equal or higher profits and would probably cause an increase in the use of both irrigation 

water and fertilizer use.  Several inputs can affect the quality of cotton including climatic 

conditions.  The accuracy of weather conditions can be factored into the original 

theoretical model as 

(3.6) ( )ARRARR R −+= δ*  

(3.7) )(* AHUHUAHUHU HU −+= δ , 

where R* is assumed rainfall; AR is long term average rainfall; Rδ  is the rainfall 

information availability coefficient; and R is actual rainfall.  HU*is assumed heat unit 

amounts; AHU is heat units; HUδ is the heat unit information availability coefficient; and 

HU is the heat unit amount.  Perfect climate information would give δ a value of one, 

meaning that management decisions would be made on the basis of actual rainfall and 

heat unit accumulation which would result in higher profits than a simple average of 

rainfall and heat accumulation. 

To conduct their research, Britt et al. (2002) collected data from three field 

experiments over a time frame of three consecutive years.  The data included information 
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on lint yield, seed yield, turnout, staple length, and fiber length  The three fields were 

subjected to different irrigation water and fertilizer application rates and weather 

conditions.  Using the following hedonic profit equation allowed Britt et al. (2002) to 

account for multiple quality features as 

(3.8) ),(),( WMDTCWMDTR −=Π  

where Π  is profit; TR is total revenue; MD is management decisions; W is prevailing 

weather; and TC is total cost.  Using this equation, Britt et al. wanted to determine the 

extent of the effect and risk of using more reliable climate and weather information on 

management decisions and profitability (Britt et al. 2002). 

Using equation (3.8), Britt et al. created four scenarios to determine whether 

management decisions under improved weather forecasts would improve profitability 

and/or reduce risk.  The first scenario assumed perfect weather forecasts with decision 

makers wanting to maximize profit considering both quality and quantity.  The second 

scenario assumed the decision maker wanted to maximize profit under perfect weather 

forecasts while only considering quantity.  The third scenario only based decisions on 

past average weather history while maximizing profit considering both quality and 

quantity while the fourth, also using past average weather history maximizes profit only 

considering quantity. 

The results showed that maximizing quality and quantity require very different 

input combinations.  A perfect forecast slightly increases overall price when quality is 

considered but also reduces overall yield.  Though there is reduced yield at higher 

quality, profit still increases because irrigation costs are reduced.  When quality is 

dismissed, perfect weather forecasts barely increase overall average lint yields.  Britt et 
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al. concluded that while it is seen that input use decisions based on quality considerations 

and the availability of improved forecasts can increase profits and reduce risk, it is not 

known if the benefits are enough for growers to practice. 

3.2.6 Planting Decisions and Rational Expectations 

In 1982, Shonkwiler and Emerson created a model of the Florida tomato industry 

which included factors that influenced the production decisions of growers.  In this study, 

the main factor considered was the competition provided by Mexican tomato growers.  

They knew that many Florida growers were upset by the overwhelming tomato supply 

Mexican growers were exporting to the United States.  They hypothesized that growers 

would vary planting decisions based on information available at planting time.  If farmers 

had a realistic expected price of a crop, determined by predictions from supply and 

demand models, then they would plant accordingly (Shonkwiler and Emerson 1982).  

To create their model, Shonkwiler and Emerson (1982) followed the concept of 

rational expectations as defined by Muth, who said that “rational expectations are 

essentially the same as predictions of the relevant theory” (Shonkwiler and Emerson 

1982).  Shonkwiler and Emerson (1982) created a system of four equations specifying the 

supply of Florida tomatoes in both acreage and yield equations as 

(3.9) tttttot ARCPA 1143
*

2
*

1 µααααα +++++= −   

and 

(3.10) tttttot XWLPY 2321 )( µββββ +++−+= , 

where tA  is the acreage of planted tomatoes in time t ; tP*  is the expected price of 

tomatoes in time t ; tC * is the expected cost of production in time t ; tR  is the prime 
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interest rate during the planting decision phase in time t ; 1−tA  is the partial acreage 

adjustment factor; t1µ  is the error term; tY  is the yield of thirty pound cartons per planted 

acre in time t ; tP  is the season average price per carton of tomatoes in time t ;. tL  is the 

wage per carton for farm workers in time t ; tW  is the weather index in time t ; tX  is the 

adoption of new technology in time t ; and t2µ  is the error term in time t .  The third 

equation shows the demand equation for Florida tomatoes as 

(3.11) tttttott IMQDP 332 µγγγγ ++++=− , 

where tP  is the season average price per carton of tomatoes in time t ; tD  is the 

consumer price deflator in time t ; tQ  is the quantity of shipped tomatoes in time t ; tM  

is the quantity of imported tomatoes from Mexico in time t ; tI  is the total consumer 

disposable income in time t ; and t3µ  is the error term in time t .  The fourth equation the 

researchers included finalized the system of equations: 

(3.12) ttt YAQ ×≡  

where tQ  is the quantity of shipped tomatoes in time t ; tA  is the acreage planted in time 

t ; and tY  is the yield per acre in time t .  In the creation of this system of equations the 

researchers assumed that planting decisions were made based on expected price and cost, 

farmers rent the land and therefore are less interested in planting alternate crops, and only 

partial adjustments may be made in acreage from one year to the next, 1−tA .  To simplify 

the system of equations used for this study, Shonkwiler and Emerson (1982) 

hypothesized that Mexican tomato imports were exogenous. 
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The data used for past tomato prices and acreage planted were from the Florida 

Vegetable Summary and included data from nineteen winter seasons from 1961 through 

1980.  Using this information, Shonkwiler and Emerson (1982) constructed an economic 

model to determine expected prices as 

(3.13) ( ) ( ) ⎥
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where the asterisks indicate the expected values of the current exogenous variables 

(Shonkwiler and Emerson 1982).  They found that expected prices are dependent on 

expected imports *
tM  and the exogenous variables ,tC  tL , tD , and tI .  Substituting the 

expected values for the exogenous variables into an expected price equation and acreage 

equation, Shonkwiler and Emerson (1982) found that a 10% increase in imports would 

decrease Florida tomato prices by 2.68% and quantity by 5.91% (Shonkwiler and 

Emerson 1982).  They concluded that imported Mexican tomatoes impact the Florida 

tomato supply.  Florida tomato acreage was adjusted 42% in the time period due to 

changes in expected Mexican imports (Shonkwiler and Emerson 1982).  They concluded 

that Florida tomato growers adjust their planting acreage based on expected Mexican 

tomato imports. 

3.2.7 Supply Response and Weather 

Florida and Mexican tomato growers have been in turmoil since the United States 

trade embargo with Cuba in 1961 (Thompson et al. 2005).  Florida growers blamed 

Mexican growers of dumping fresh tomatoes in the United States market.  In November 

1996 a suspension agreement was established in an attempt to resolve tomato importing 

issues between Mexico and Florida (Thompson et al. 2005).  The suspension agreement 
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was designed to minimize Mexican tomato imports by assigning a reference price.  

Thompson et al. (2005) wanted to determine if the reference price affected the supply 

response for Florida fresh tomatoes. 

With an empirical supply-response model and using growing degree days from 

daily weather observations, Thompson et al. (2005) were able to determine timing and 

size of upcoming tomato harvests.  This also allowed them to determine specific 

measures for lags between planting and harvesting.  Thompson et al. (2005) noted that 

Florida’s fresh tomatoes are shipped in the winter from mid-October to late June.  They 

are transplanted beginning in August until mid-March.  If the fresh tomato market has a 

high price, many growers will harvest only the highest quality tomatoes.  If the fresh 

tomato market has low prices many growers will harvest all tomatoes as long as they are 

still able to cover costs (Thompson et al. 2005).  Growing degree days can help determine 

the moment of harvesting and potential quantity of tomatoes.  Using this information, 

Thompson et al. (2005) modeled current shipments of round tomatoes 

(3.14) ),,,( )(, tGDDhtittt Axpqq −=   i =1,…,4; t =1,…,T  

where tq is the quantity of round tomatoes shipped in a given week in a particular season, 

tp  is the weighted average price of mature green and vine ripe tomatoes in week ,t  tx  is 

the vector of exogenous shipment shifters including wages and other input prices, and 

)( tGDDhiA −  is the corresponding total acreage from all i  regions “harvestable in week t  as 

determined by matching cumulative degree days )( tGDD  with acreage planted in prior 

weeks of ht −  (Thompson et al. 2005).  The weekly planted acreage for the counties 

used was only available for eight growing seasons from 1993-2001.  These data capture 
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the necessary information before and after the suspension agreement was implemented in 

November 1996. 

Thompson et al. (2005) found that changes in prices, shipments and acreages 

occurred during the eight seasons.  Shipments from Florida have increased with a 

significant increase noted during the first reference price period.  Florida average prices 

have not decreased during the suspension agreement.  In the first reference period, 

Mexican tomato shipments increased by 11% in the first reference period, but declined in 

the second period by 38%.   

3.3 Seasonal Climate Variations and Agriculture 

3.3.1 ENSO Signal and Soybean Futures Prices  

Keppenne (1995) determined the existence of a correlation between soybean 

futures prices and the ENSO signal.  Because ENSO effects are heavily noticed around 

the world in various ways, Keppenne (1995) rationalized that these effects would have an 

influence on an economic time series.  The soybean was the perfect candidate to test his 

theory due to their dramatic response to climate effects.  Another characteristic of 

soybean conducive to the study was their presence in the futures market.  Since soybean 

supply is affected by climate, futures prices could theoretically be more accurately 

predicted using ENSO forecasting. 

To test this theory, Keppenne (1995) used a normalized detrended time series of 

monthly average closing prices of soybean futures contracts and normalized southern 

oscillation index (SOI) data.  SOI is calculated by the monthly fluctuations in air pressure 

between Tahiti and Darwin.  Identical normalization processes were applied to both the 

soybean prices and the SOI data.  Keppenne (1995) decided to use average monthly 

soybean prices despite much concern.  He believed that through averaging, most 
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discontinuities in the data could be removed.  To account for noise in the data, Keppenne 

(1995) subjected the data to singular spectrum analysis (SSA) which aides in removing 

high frequency noise in the data.  He then subjected the data to multichannel SSA (M-

SSA) which provided for a more distinct separation of the interannual components.  His 

results showed that 40.3% of the variance of the SOI data and 44.7% of the variance in 

the soybean price data were captured, suggesting that a relationship existed between 

soybean prices and the interannual climate. 

In his discussion, Keppenne (1995) pointed out other ENSO factors that could 

influence the results in his study or studies similar to his.  Warm conditions over the 

Pacific Ocean cause poor fishing conditions, increasing the demand for soy, a protein 

substitute.  In addition, El Niño generally causes very rainy weather over the Midwestern 

United States, reducing harvest expectations of soy grown in the area.  During his study, 

Keppenne (1995) also tested the impact of ENSO on wheat and corn future prices, and 

found no significant correlation.  Keppenne (1995) believed this lack of correlation was 

due to government programs in the corn and wheat markets. 

3.3.2 ENSO and Soybeans 

Letson and McCullough (2001) decided to test Keppenne’s (1995) findings further 

by determining if it was possible to describe the strength of the relationship between 

ENSO and soybean prices.  They believed that in order for soybean producers, 

distributors, and consumers to benefit from ENSO forecasts it was necessary to know the 

strength and timing of ENSO occurrences.  Letson and McCullough (2001) also wanted 

to account for the effect of ENSO on both the demand and supply for soy.  Because 

supply and demand affect the spot price of a commodity, they wanted to see if the ENSO 

signal could be seen in the spot price of soy.  To further test Keppenne’s (1995) methods 
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and results, Letson and McCullough (2001) chose to use a different set of data to account 

for ENSO and used sea surface temperature anomalies (SST) instead of the SOI data. 

Using price data provided by the USDA/NASS, Letson and McCullough (2001) 

analyzed the relationship between soy price per bushel and the SST data.  Using spectral 

analysis on the data from 1974-2000, Letson and McCullough (2001) regressed soy 

prices on a constant, linear time trend.  The time trend was found to be statistically 

significant.  To test their findings further, they ran autocorrelation and partial 

autocorrelation on the two series together.  They found that with the soy price data, 

partial autocorrelation stops after two lags while the autocorrelation decreases as the lags 

increase, indicating a weak 12 month cycle.  The SST data showed that both partial 

autocorrelation and autocorrelation were no more significant than the spectral analysis 

conclusion.  

Letson and McCullough (2001) also tested cross spectral analysis, finding no 

coherence at the 48 month cycle or at any cycle that could be caused by the ENSO signal.  

Letson and McCullough (2001) concluded because of Keppenne’s results and their own 

that ENSO and soybean prices are highly correlated and nearly in phase only in relation 

to SOI signal.  The SST signal was found only to be in phase at the annual cycle, though 

they could not conclude that SST affects soy prices. 

Because Letson and McCullough (2001) found some correlation between soy 

prices and the SST data, they wanted to test whether the correlation satisfied the 

economic concept of causality.  Using the Granger Causality with a maximum lag of 18 

months for soy and SST, they ran regressions with 2 to 16 lags for soy and 13 to 17 lags 

for SST for a total of 75 regressions.  After running a t-test on the lags, no evidence of 
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instantaneous causality was found.  They also found that after running F-tests, not one of 

the 75 regressions resulted in SST having a direct effect on soy prices.  Letson and 

McCullough (2001) found that the relationship between ENSO and soybean prices found 

by Keppenne has no practical economic content. 

3.3.3 Value of Improved ENSO Forecasts 

In 1998, Solow et al. assessed the return to investment in improving climate 

forecasts in regards to agricultural production.  The three ENSO phases affect various 

regions around the United States in different ways.  If farmers knew which of the ENSO 

phases were to come in the future, arrangements could be made to select appropriate and 

profitable cropping patterns that would optimize yield.  Solow et al. (1998) stated that the 

economic effect of improved ENSO prediction is equivalent to that of a technological 

improvement.  The increase in supply resulting from input adjustments leads to economic 

surplus.  Solow et al. (1998) defined the economic effect of ENSO phase prediction as 

the expected change in economic surplus due to changes in cropping patterns from ENSO 

predictions.  In order to estimate the value of improved ENSO prediction, Solow et al. 

(1998) modeled the climatic differences of the ENSO phases, the differences in yield 

related to the climate effects, planting decisions, and the way farmer behavior affected 

the market of agricultural products. 

Solow et al. (1998) used the ENSO phase classifications of El Niño, La Niña, and 

Neutral compiled by the Japan Meteorological Index (JMI) over a 40 year period from 

1947- 1986.  The JMI is based on a five month moving average of the average sea surface 

temperature anomaly in the equatorial Pacific Ocean (Solow et al. 1998).  If the index 

was greater than 0.5ºC for six consecutive months then the ENSO was classified as El 

Niño phase, if less than -0.5ºC  then the ENSO was classified as La Niña.  All other 
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indexes were calculated as Neutral (Solow et al. 1998).  Next, they calculated monthly 

climate statistics in 54 locations across the United States associated with agriculture.  

Data used included the mean and standard deviation of daily minimum and maximum 

temperature, skewness of daily precipitation, the number of wet days, and the transition 

probabilities between wet and dry days.  From these data, they concluded that the 

difference in ENSO phases was greatest during winter months.  Solow et al. (1998) 

concluded that ENSO was most pronounced in the southeastern United States where El 

Niño years are colder and wetter than normal in fall and winter, and warmer and dryer 

than normal in spring and summer.  La Niña was found to affect climate opposite to El 

Niño although at a lesser strength.  

To determine effects on yield, Solow et al. (1998) used a plant biophysical 

simulation model similar to Adams et al. (1995).  The crops used in their study included 

barley, corn, cotton, hay, potatoes, rice, sorghum, soybeans, tomatoes and wheat.  The 

yield results indicated differences in summer crops due to water stress while winter crops 

were mostly affected by temperature stress. 

The way in which farmers could use the simulated crop yields to optimize their 

cropping patterns can be seen with the Bayesian decision theory.  The expected economic 

surplus 1T  can be found with a probability of a specific ENSO phase given  

(3.15) )()(11 ssTT
s

π∑=  

where s  designates the realization of an ENSO phase; )(1 sT  is the economic surplus 

from aggregate supply curves; and )(sπ equals the probability of each phase based on 

past history divided by the total number of observations.  If an ENSO phase is forecasted 

prior to a planting season, then the farmer could use predictions to update the probability 
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distribution for )(sπ using Bayes’ theorem.  In order to create realistic probabilities to 

test Bayes’ theorem, Solow et al. used known ENSO phases from 1947-1986 and divided 

the total number of each phase occurring over the time span of 40 years by the total 

number of observations.  Yield data from 1992 were used to solve for price and quantity 

data.  Solow et al. (1998) found that over a 10 year period, well predicted ENSO phases 

presented a net present value of approximately $2 billion to the agricultural sector.   

Solow et al. (1998) determined that while their study shows a significant value to 

the agricultural sector from correct ENSO predictions, they realized their unrealistic 

assumption that all farmers would respond optimally to ENSO predictions.  They also 

noted that there is a significant difference between perfect ENSO predictions and perfect 

climate prediction due to climate variability within ENSO phases, which would have a 

direct impact on individual regions.  Despite this, the Solow et al. (1998) study 

corroborates with others that ENSO forecasts can have an economic impact on the 

agricultural sector.  

3.3.4 ENSO and Other Commodities 

In 1998, Hansen et al. evaluated both ENSO phases and SST anomalies in 

reference to their influence on crop production in Alabama, Florida, Georgia, and South 

Carolina.  This southeast region of the United States, between October and April, 

generally has cooler temperatures and wetter conditions during El Niño phases and 

warmer temperatures and dryer conditions during La Niña phases.  Six crops including 

peanut, tomato, cotton, tobacco, corn, and soybean were examined and ranked relative to 

the economic impact of ENSO (Hansen et al. 1998). 
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They gathered historical data from 1960-1995 provided by the USDA/NASS for 

the six crops.  Using an analysis of variance test (ANOVA), they tested their hypothesis 

that ENSO influences the value of crops in these four states.  They found that crop yield 

showed a significant response to ENSO, though corn and tobacco showed the most 

significant response.  They also noticed high yields seen during a La Niña year were 

lower the following year.  The ANOVA results implied that ENSO does in fact play a 

role in crop yield.  Hansen et al. (1998) realized from their results that SST had a strong 

influence on the yields of all six crops in Florida, making it the most susceptible state in 

their study to ENSO effects.  Similar to Letson and McCullough (2001), Hansen et al. 

(1998) found no ENSO influence on prices.  They attributed this to the methods of their 

study which made it difficult to identify an ENSO influence on an individual crop price.  

They concluded that if ENSO phases were forecast, farmers could adjust their strategies 

to prevent losses and increase revenue. 

3.4 Improved Climate Predictions and ENSO 

3.4.1 Value of Forecasting 

Seasonal climate variation plays a large role in many aspects around the globe from 

severe drought to devastating floods.  While extreme weather conditions do occur, even 

moderate changes in temperature and precipitation can be important especially when it 

comes to agriculture.  Interannual variation in both precipitation and temperature affects 

agriculture on many levels including production, prices and profits.  One study estimated 

the economic value of ENSO on the U.S. agriculture, forestry and fishery sectors at $200 

million per year with the greatest percentage going to agriculture (Adams et al. 1995).  

This study was based on several subjective findings regarding avoidable losses due to 

ENSO (Adams et al. 1995).  Adams et al. (1995) determined there was a need for an 
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objective assessment of the value of improved ENSO forecasting on several levels 

involved in agricultural decision making, including agronomic, economic and 

meteorological.  Their primary focus was in the southeastern United States due to the 

strong and diverse agricultural production in that region and the significant impact the 

ENSO phenomenon presents.   

The framework used in the Adams et al. (1995) study is Bayesian decision theory 

combining data and models from meteorology, plant science, and economics.  Their 

economic model showed the impact of crop production in the southeastern United States 

on the welfare of the United States as a whole.  The value of ENSO forecasts to 

agriculture can be measured by the expected increase in economic benefits that result in 

the use of forecast information to make decisions.  If farmers alter their decisions due to 

forecasts provided by ENSO, then it can be said that economic value of ENSO 

forecasting exists.  Adams et al. (1995) used the assumption that farmers will use planting 

and harvesting strategies that maximize profits under their current beliefs about the 

ENSO phases.  They summarized these beliefs in the form of a probability distribution 

over the three ENSO phases.  Calculating the value of an ENSO forecast requires the 

knowledge to determine a farmer’s optimal strategy and total economic welfare under 

each of the three possible distributions.  Using Bayes’ theorem, farmers can make 

decisions based on ENSO phase predictions.  Using updated distributions, farmers can 

use strategies that maximize expected profits. 

In order to assess the value of ENSO forecasts, Adams et al. (1995) used a three 

stage process.  The first stage estimated the average seasonal minimum and maximum 

daily temperatures and monthly precipitation.  They then categorized each year between 
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1948 and 1987 to be El Niño, La Niña or Neutral according to the Japan Meteorological 

Index (JMI).  In the second stage they used the Erosion Productivity Impact Calculator, a 

mathematical model, to estimate the yield implications of various weather events on 

particular crops.  The data set used for the Erosion Productivity Impact Calculator 

consisted of weather, wind, soil, and crop management data within a specific location in 

the southeast United States.  Adams et al. simulated yields for a 10 year period for four 

major crops considering individual weather scenarios and locations.  They then averaged 

each of the yield observations, to calculate the percent change in crop yield, climate 

conditions and location.  The results indicated, in practically every scenario, that La Niña 

produced the highest crop yields; El Niño produced the lowest crop yields and a Neutral 

year produced yields in between the two. 

The percentage changes found using the Erosion Productivity Impact Calculator 

were then used for economic modeling.  Economic modeling allowed the physical yield 

effects to be converted into economic effects on both producers and consumers.  The 

results showed a gain to producers and consumers with perfect forecasting, with or 

without government involvement in farm programs.  Adams et al. (1995) concluded that 

the agricultural sector can acclimatize to climate variation. 

3.4.2 Seasonal Climate Forecasts and the Economy 

Hill and Mjelde (2002) wanted 1) to determine if improved seasonal climate 

forecasts are possible, 2) what would be the value to society and more importantly, 3) if 

decision makers would use this improved information, and finally, 4) how would decision 

makers use this improved information. 

While there are other ocean phenomena around the world, ENSO is the most 

widely studied.  Sea surface temperature anomalies in the equatorial Pacific ocean affect 
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trade wind circulation in both the northern and southern hemisphere.  The sea surface 

temperature changes cause a disturbance to the jet stream, which in turn affects storm 

patterns.  Hill and Mjelde (2002) found that the temperature changes between El Niño 

and La Niña are not proportional, meaning that “the climate variability associated with 

the La Niña event is not a linear image of the El Niño event in terms of magnitude or 

regional association” (Hill and Mjelde 2002, p.607). 

From their research of past studies, Hill and Mjelde (2002) found a correlation 

between the ENSO climate phenomenon and crop output.  One study determined that 

25% of the value of corn in the United States could be related to ENSO.  If forecasts were 

accurate, farmers could capture some of the value by changing input practices.  In the 

United States, the strongest correlations between climate effects on agriculture and ENSO 

have been found on the Gulf Coast and in the northeast, southwest and northwest regions.  

Unfortunately, it is difficult to perfectly forecast how an ENSO phase will affect each 

region.  ENSO phases not only have different strengths, but also affect the various areas 

differently at different times of the year (Hill and Mjelde 2002). 

For a seasonal climate forecast to be valuable, it has to help individuals or groups 

to significantly improve their utility more than without a forecast and be able to influence 

decision makers’ actions (Hill and Mjelde 2002).  If decision makers are able to change 

regular decisions to improve their economic outcomes, then forecasts are valuable.  Some 

studies have shown that lead time is a very important factor with forecasting.  At times, a 

less accurate forecast that decision makers receive early enough to alter decisions can be 

more valuable than more accurate forecasts given at a later date (Hill and Mjelde 2002).   
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To determine how to place a monetary value on ENSO forecasts, researchers have 

used the Bayesian approach combined with decision theory.  This method uses updated 

seasonal forecasts and the decision makers’ knowledge of past or historical climate 

conditions.  Other researchers have determined ways to account for risk attitude or use 

crop simulation models to attempt to determine how climate would affect yield. 

Improved seasonal climate forecasts can help decision makers be more efficient; 

however it is difficult to determine the best way to publicize the knowledge that decision 

makers face risk when adopting new technologies and may not be open to new ideas.  

Hill and Mjelde (2002) concluded that if only a few decision makers choose to utilize 

climate forecasts, their actions will slightly impact the crop price, reducing the rate of 

acceptance by others. 

3.5 Summary 

Previous studies show that weather and climate can influence agriculture.  Many of 

these studies looked into the value of forecasting weather and climate.  Generally, they 

observed weather and climate as equal entities because many of the studies were 

completed before the distinction between seasonal climate variability and weather 

discussed in Chapter 2.  All of the studies determined an economic value existed for 

forecasts though many of them assumed perfect forecasts, a near impossible reality at this 

time.  Input use and costs could be most affected by improved forecasts. 

Keppenne (1995) found a relationship between soybean prices and interannual 

climate using SOI data, but Letson and McCullough (2001) determined that Keppenne’s 

(1995) results had no practical economic content.  Hansen et al. (1998) found that crop 

yield showed a significant response to ENSO.  They also found that SST had the most 

influence on all crops, including tomato yields in Florida.  They found no evidence of 
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ENSO influence on prices, though they attributed this to their methods of study.  

Shonkwiler and Emerson (1982) provided the framework for the economic model for this 

present study while the other studies helped to provide a larger range of knowledge to 

produce an ideal model.   
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CHAPTER 4 
EMPIRICAL MODEL 

4.1 Background 

The framework for the empirical model used in this research is based on 

Shonkwiler and Emerson (1982).  Shonkwiler and Emerson (1982) wanted to determine 

if Florida tomato growers adjusted planted acreage based on the expected winter Mexican 

tomato imports and their impact on the price of tomatoes.  In their supply and demand 

model, Shonkwiler and Emerson use the rational expectations hypothesis based on the 

idea that expected price will determine expected acreage.  They created a four equation 

system for their supply and demand model for Florida tomatoes with the supply side 

consisting of acreage and yield equations (Shonkwiler and Emerson 1982). 

4.2 The Model 

Similar to Shonkwiler and Emerson (1982), the empirical model used in this study 

consists of four equations.  Slight alterations have been made in equations (4.1) and (4.2).  

In equation (4.1) Shonkwiler and Emerson solved for planted acreage, but this model will 

solve for harvested acreage due to data limitations.  Because harvested acreage is being 

used, the interest rate variable is removed, and the price and cost data have been deflated.  

In equation (4.2), Shonkwiler and Emerson (1982) consider the hourly labor wage rate, 

while this model simply examines deflated harvest costs, which also include the hourly 

wage rate.  Shonkwiler and Emerson’s (1982) weather index is substituted with two 

variables indicting the presence of either El Niño or La Niña climate phases.  The 
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technology improvement, methyl bromide, has been added to the model.  The empirical 

model (Appendix A) used in this study consists of the following four equation system: 

(4.1) tttot CPA 121 µααα +++= , 

(4.2) ttt
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where tA  is the acreage of harvested tomatoes in time t  and has been adjusted to 

thousands of acres; tP  is the price per 25 pound carton of tomatoes in time t , and is 

expected to have a positive impact on acres harvested; tC is the harvest cost per 25 pound 

carton of tomatoes in time t , and is expected to have a negative impact on acres 

harvested; t1µ  is the error term; tY  is the yield of 25 pound cartons per harvested acre in 

time t  and has been adjusted to tens of cartons; 1D =1 for the El Niño climate effect, zero 

otherwise, and is expected to have a negative impact on yield; 2D =1 for the La Niña 

climate effect, zero otherwise, and is expected to have a slightly positive impact on yield; 

3D  =1 for the Neutral climate, zero otherwise, but was eliminated because it would have 

caused a singular matrix; tX =1 for the adoption of plastic mulch in time t , zero 

otherwise, and is expected to have a positive impact on yield; tL =1 for the adoption of 

methyl bromide in time t, zero otherwise, and is expected to have a positive impact on 

yield; t2µ  is the error term in time t ; tF  is the consumer price deflator (October-June) in 

time t; tQ  is the production of Florida fresh tomatoes in 1,000 cartons in time t , adjusted 
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to thousands of 25 pound cartons, and is expected to have a negative impact on price; tM  

is the quantity of imported tomatoes (October-June) from Mexico in time t , adjusted to 

ten thousands of pounds, and is expected to have a negative impact on price; tI  is the 

total consumer disposable income (October-June) in time t  adjusted to hundreds of 

billions of dollars, and is expected to have a positive impact on price; and t3µ  is the error 

term in time t .   

4.3 Data Values and Sources 

Collecting data for the model was an intricate and detailed process.  The time frame 

for the data is from 1959-2003 due to limited data available for the quantity of imported 

Mexican tomatoes.  All data are representative of the fresh Florida tomato industry 

(Appendix B).  In addition, data concerning tomato crate weight in pounds have been 

converted from 60, 40, and 30 pound crates to the current standard of 25 pound crates.   

The focus for this research centered on the fresh Florida tomato industry.  Florida 

has a relatively small number of processed tomato growers.  Due to legality issues, data 

for planted acreage of either fresh or processed tomatoes cannot be individually reported 

because of the small number of processed tomato growers.  The Florida Agricultural 

Statistics Service who provides data for the Vegetable Summary does not individually 

provide data exclusively for fresh tomatoes planted or harvested acreage.  They do 

provide fresh tomato data for tY  the yield of 25 pound cartons per harvested acre in time 

t , and for tQ , production of Florida fresh tomatoes in 1,000 cartons in time t . 

(4.5) 
t

t
t Y

Q
A ≡ . 
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Using equation (4.5) the acreage harvested, tA , could be determined.  The time frame 

used for the fresh tomato harvest season is from October through June.  For example, the 

1959 season begins in October 1959 and ends June 1960.  Data for Pt were found in the 

Florida Statistical Services Vegetable Summary. 

The data for Ct were found using various issues of a cost and returns publication 

provided by the University of Florida’s Food and Resource Economics Department 

(Brooke 1950-1979), (Bean 1981), (Smith and Taylor 1986-2004), (Taylor 1981-1986).  

The cost data had to be modified.  The original formatting of the data provided only a 

small sampling of farms in 4 specific areas in Florida.  Data from the Dade, Ft. Pierce, 

Immokalee and Manatee/Ruskin area, were weighted using acreage data from the Florida 

Agricultural Statistical Service’s Vegetable Summary.  To begin, the sum of the cost 

times the acreage  for each county were totaled then divided by the sum of the acreage 

per county to provide the weighted average.  This final number, depending on the year, 

had to then be converted from 60, 40, or 30 pound cartons to 25 pound cartons. 

Data for tY  were gathered from the Vegetable Summary which provided data for 

fresh tomatoes.  Certain years had to be converted from 60, 40, or 30 pound cartons to the 

now standard 25 pound cartons. 

Data for 1D  and 2D  were found through the Center for Ocean-Atmospheric 

Prediction Studies (Legler 2005).  A value of one was assigned to the years when either 

an El Niño or a La Niña phase occurred.  A value of zero was used for Neutral phase 

years.  El Niño is expected to have a negative impact on yield because the greater than 

average precipitation associated with El Niño can damage root systems.  Also, the lower 

than average temperatures associated with El Niño can delay crop development.  Though 
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La Niña is associated with lower than average rainfall amounts, irrigation can be used to 

adjust any deficit in precipitation.   

Data for tX  were based on Shonkwiler and Emerson’s (1982) model.  They 

assigned a value of one each year after 1973, when the use of plastic mulch was adopted, 

and a value of zero prior to 1974.  Data for tL  were found in Carpenter et al. (2000).  A 

value of one was assigned to each year after 1977 when methyl bromide was widely used 

in Florida, and a value of zero was used prior to 1978. 

Data for tF  were found from the United States Department of Labor.  The sum of 

the monthly values from October through June was averaged to assign a value to the year.  

For example, the monthly average from October 1964 through June 1965 was used as the 

value for tF  during the year 1964.  Data for tQ  were obtained from the Florida Statistical 

Services Vegetable Summary.  These data were provided in 1000 bushel units for fresh 

tomatoes.  Data for tM  were provide by the United States Department of Agriculture 

(Lucier 2004).  The data provided were in 1000 pound cartons and were only available as 

far back as 1956.  These data limited the time frame for this study.  Finally, the data for 

tI  were found using the United States Department of Commerce.  The data were not 

deflated and were provided quarterly where data from the fourth quarter (October-

December), first quarter (January-March) and the second quarter (April-June) were used.  

An average of the three quarters provided the final value for the year.  For example, the 

average of the data from the fourth quarter (October-December) of 1978 through the 

second quarter (April-June) of 1979 was used as the value for tI  during the year 1978 in 

100 billion dollars. 



45 

CHAPTER 5 
RESULTS 

5.1 Model Results 

Using the data collected, the four equations (4.1), (4.2), (4.3), and (4.4) were 

estimated using the TSP statistical program (Appendix C).  The Full Information 

Maximum Likelihood Statistical Estimator was used.  The Durbin-Watson test showed 

there was serial correlation present in the model.  Therefore the first order serial 

correlation was corrected.  Both linear and logarithm models were run.  Though neither 

run showed either El Niño or La Niña to be significantly different than zero, the 

logarithm results were preferred.  Table 5-1 shows the results for the linear models while 

Table 5-2 shows the results in logarithm form. 

For the linear model the parameters 32543221 ,,,,,,, γγββββαα  all had p-values 

that were greater than [0.1] indicating that the estimates were not significantly different 

from zero at the [0.1] level (Table 5.1).  The parameters DYA ργγρββρα ,,,,,,, 10100  all 

had p-values that were less than [0.1] indicating that the estimates are significantly 

different from zero at the [0.1] level.  The negative sign on the estimate for price ( tP ) 

indicates that a decrease in price would increase harvested acreage which is incorrect, as 

is the sign for tt CP .  The negative sign on the estimate for El Niño ( 1D ) is as expected.  

The positive sign on the estimate for La Niña ( 2D ) is also as expected.  The negative sign 

on the estimate for income ( tt FI ) is incorrect (Table 5.1). 
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Table 5-1. Empirical results from the linear model. 
Equation Parameter Variable Estimate Standard 

Error 
Acreage 0α   71.729*** 24.781 

 1α  tP  -1.3387 1.1604 
 2α  tC  -5.6651 3.7179 

 Aρ  1−te  0.92385*** 0.06645 

     
Yield 0β   163.53*** 51.941 
 1β  

t

t

C
P

 
-18.817** 7.9692 

 2β  1D  -2.3421 2.9120 
 3β  2D  0.40675 1.9452 

 4β  tX  9.8803 20.787 
 5β  tL  0.57862 19.489 

 Yρ  1−te  0.92663*** 0.09226 
     
Demand 0γ   22.164*** 8.3541 

 1γ 8 tQ  -0.28252*** 0.10240 
 2γ  tM  0.77623E-03 0.79980E-02 
 3γ  

t

t

F
I

 
-0.3349 0.17459 

 Dρ  1−te  0.87404*** 0.07193 
*Significant at the [0.1] level 
**Significant at the [0.05] level 
***Significant at the [0.01] level 

 
The estimated signs on the parameters for the linear model are different than what 

is normally expected, with the exception of El Niño and La Niña.  The signs on the 

ENSO parameters were exactly as was expected.  It was thought that El Niño would have 

a negative effect on yield, while La Niña would have a positive effect on yield.  As an 

alternative, the model was run on TSP with all variables in logarithm form.  The results 

are shown on Table 5-2. 
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Table 5-2. Empirical results from the logarithm model. 
Equation Parameter Variable Estimate Standard 

Error 
Acreage 0α   3.5246*** 0.37382 

 1α  tP  0.2163 0.33068 
 2α  tC  -0.11983 0.29512 

 Aρ  1−te  0.68256*** 0.13483 

     
Yield 0β   3.7673*** 0.34533 
 1β  tt CP −  0.33200 0.34259 
 2β  1D  0.07587 0.09018 
 3β  2D  -0.41208E-02 0.05769 

 4β  tX  0.42737** 0.19589 
 5β  tL  0.37125* 0.19102 

 Yρ  1−te  0.45319** 0.21258 
     
Demand 0γ   -0.91663 0.95164 

 1γ  tQ  -0.49458 0.51765 
 2γ  tM  -0.14933 0.13705 
 3γ  tt FI −  0.21137 0.67801 
 Dρ  1−te  0.62520*** 0.14438 
*Significant at the [0.1] level 
**Significant at the [0.05] level 
***Significant at the [0.01] level 

For the logarithmic model the parameters 321032121 ,,,,,,,, γγγγβββαα  all had p-

values that were greater than [0.1] indicating that the estimates were not significantly 

different from zero at the [0.1] level (Table 5.2).  The parameters 

DYA ρρβββρα ,,,,,, 5400  all had p-values that were less than [0.1] indicating that the 

estimates are significantly different from zero at least at the [0.1] level. 

The estimated signs on the parameters for the logarithm model are as expected with 

the exception of El Niño and La Niña.  The positive sign on the estimate for tP  indicates 
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that an increase in price would increase the acreage harvested, as expected.  The negative 

sign on the estimate for tC  indicates that a decrease in the harvest cost would result in an 

increase in acres harvested, as expected.  The positive sign on the estimate for 1D  shows 

that El Niño positively impacts tomato yield compared with a Neutral year, which is not 

as expected.  The negative sign on the estimate for 2D  shows that La Niña negatively 

impacts tomato yield compared with a Neutral year, which is not as expected.  The 

estimate value for El Niño indicates it has a larger impact on yield than the value for La 

Niña.  This could be explained due to the fact that El Niño years are generally wetter and 

cooler, while La Niña years are generally dryer which can be corrected through irrigation.  

The positive signs on the estimates for tX  and tL  indicate that an increase in technology 

would increase yield, both of which are expected impacts and are significantly different 

than zero.  The negative sign on the estimate for quantity produced indicates that as 

production decreases, the price increases, as expected.  The positive sign on the estimate 

for income indicates that as income increases, price increases, as expected.   

5.2 ENSO Impact on Price 

In order to determine the impact of ENSO on fresh tomato price, the four equation 

model would have to be solved simultaneously for the four unknown endogenous 

variables, tttt QPYA ,,, .  This would solve for the price variable which would show the 

impact of ENSO on price.  In addition, the empirical results indicate that the El Niño and 

La Niña variables are not significantly different from zero.  This shows that there is no 

impact on yield, and therefore no impact on price. 

ENSO effects are strongest in Florida during the winter months.  Ideally, the model 

would have been run using seasonal data, specifically winter, rather than annual data.  
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Due to data limitations this was not possible.  This limitation could partially account for 

the results obtained.  Irrigation can be used to correct drought conditions faced during La 

Niña phases which could also account for some of the results.  In addition, the effects of 

ENSO could be too small, preventing a regression to detect it. 

A simple regression of actual tomato price over a period of years incorporating 

ENSO phases, Figure 5-1, is a way to see if ENSO phases are correlated with tomato 

price.  The graph in Figure 5-1 shows the correlation each ENSO phase has on tomato 

price.  Neutral years have a greater correlation with tomato price than El Niño or La Niña 

years.  El Niño years seem to have a lower correlation with price.  La Niña years have 

lower tomato prices than Neutral years.  It is interesting to note that a change in the 

relationship of ENSO phases to prices occurs around 1980.  Further research could be 

done to determine the reason. 

Enso years and prices
y = -0.0002x3 + 1.0923x2 - 2160.7x + 1E+06

R2 = 0.9817 Neutral
y = -0.0005x2 + 2.1893x - 2295.1

R2 = 0.8163 Nino

y = -0.0002x3 + 1.0009x2 - 1979.4x + 1E+06
R2 = 0.9489 Nina
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Figure 5-1. ENSO phases over time and price. 
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5.3 Summary 

The linear model had the incorrect sign on every estimate except for ,1D  2D , tX  

and tL .  Neither El Niño nor La Niña had p-values that were significantly different from 

zero in the linear model.  The logarithm model had the correct signs on every parameter, 

with the exception of 1D  and 2D .  Neither El Niño nor La Niña had p-values that were 

significantly different from zero in the logarithm model.  These results indicated that 

neither ENSO phase had an impact on fresh Florida tomato yield.  Because the system of 

equations could not be solved for price as a function of ENSO, ENSO has zero effect.  

ENSO phases had no impact on the price of tomatoes. 

If ENSO phases do influence tomato prices, it may be on a scale that is too small 

for the method used in this study.  If historical, seasonal tomato data were available; this 

study could be replicated, replacing annual data with seasonal data, possibly resulting in 

significant findings.   
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CHAPTER 6 
CONCLUSIONS AND IMPLICATIONS  

6.1 Summary  

This study centered on determining if fresh Florida tomato prices were impacted by 

the ENSO phenomenon.  ENSO is a seasonal climate variation caused by interactions 

between the Pacific Ocean and the atmosphere (Soreide and McPhaden 2005).  The three 

phases of ENSO are known as El Niño, La Niña, and Neutral.  The variations in climate 

among the three phases are noticeable around the world.  In the United States, the effects 

are most prominent in Florida during the winter months. 

The majority of fresh tomatoes produced in the United States are grown in Florida.  

A large portion of fresh tomatoes in Florida are planted during the winter months.  

Researchers have assigned monetary values to ENSO forecasting using subjective 

findings (Adams et al. 1995).  Other research has shown relationships exist between 

futures prices and SOI data.  Overall, past research has indicated that climate has an 

economic impact on agriculture.  Among other factors, the fresh tomato industry in 

Florida depends on the high quality of their tomatoes to determine price.  Fresh tomatoes 

in Florida are sold on the open market allowing for more variation in price than processed 

tomatoes.  It is thought that ENSO phases could impact Florida’s fresh tomato prices.   

The fresh market tomato industry has a farm value of more than $1 billion in the 

United States with Florida holding the largest share.  Fresh tomatoes in Florida account 

for approximately one third of the state’s vegetable cash receipts (Lucier 2004 and 

Mongiovi 2005).  Much research has been done showing the effects of ENSO on yield, 
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though no significant research has been done studying the impacts of ENSO on Florida 

tomato prices.  Thus, the primary objective of this research was to determine if ENSO 

seasonal climate variation has an impact on Florida tomato prices.  An empirical model 

composed of four simultaneous equations with all variables in logarithms, similar to 

those of Shonkwiler and Emerson (1982), was used for this research.   

6.2 Conclusions  

The empirical results indicated that the El Niño and La Niña variables are not 

significantly different from zero, meaning they have no significant impact on yield 

fluctuations.  Therefore it can be concluded that ENSO has no impact on price because it 

had no impact on yield.  The model used in this study was run using annual data from 

1959-2003.  Data for ENSO phases are available as far back as 1868 (Legler 2005).  

Ideally, a longer time frame would have been used in the model to capture as many 

ENSO phases as possible; however, data availability was a problem. 

6.3 Implications 

Based on this model, ENSO has no impact on price.  Improved forecasts of ENSO 

would have no value to farmers as ENSO would not influence their decision making 

process.  Though this study found no ENSO impact on yield, this study can be used as a 

baseline for researchers to further determine the impact ENSO may have for tomato 

growers.  If more historic detailed data could be gathered or future data gathering 

techniques improve, further research regarding ENSO and its impact on tomato or other 

crop prices could more accurately reflect the value of ENSO forecasts to farmers. 
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APPENDIX A 
EMPIRICAL MODEL 
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Year At  Pt Ct Rt Yt W D1 D2 D3 T Xt Lt Ft Qt Mt It 
1956 36202 2.03 0.71 4.00 367 31.15 1 0 0 33.26 0 0 27.74 13286 69,005 314.97 

1957 29631 2.19 0.75 4.07 271 23.17 0 0 1 24.51 0 0 28.64 8030 100,430 324.37 

1958 46396 2.21 0.73 4.08 414 35.09 0 1 0 37.51 0 0 28.97 19208 226,241 343.77 

1959 38315 2.61 0.73 5.00 464 39.36 0 1 0 42.03 0 0 29.43 17778 240,355 361.07 

1960 41286 1.97 0.83 4.50 616 51.94 0 1 0 55.75 0 0 29.80 25432 251,822 372.83 

1961 42188 2.00 0.86 4.50 649 54.70 0 1 0 58.72 0 0 30.09 27380 156,070 398.10 

1962 44314 1.97 0.94 4.50 612 51.62 0 1 0 55.38 0 0 30.64 27120 233,216 416.13 

1963 43685 2.34 0.90 4.50 673 56.73 0 0 1 60.81 0 0 30.89 29400 239,965 447.83 

1964 50472 2.47 0.92 4.50 576 48.66 1 0 0 52.14 0 0 31.29 29072 246,122 481.97 

1965 51400 2.29 0.97 5.09 593 50.11 0 0 1 53.59 0 0 32.01 30480 265,459 524.23 

1966 46613 2.48 0.99 5.77 626 52.94 0 1 0 56.66 0 0 33.01 29180 358,743 561.30 

1967 47043 3.16 1.09 6.04 606 51.36 1 0 0 54.86 0 0 34.14 28508 362,354 606.07 

1968 47465 3.31 1.27 7.06 516 43.97 0 1 0 46.75 0 0 35.89 24492 378,401 651.13 

1969 47448 3.06 1.35 8.32 391 33.64 0 0 1 35.39 0 0 38.04 18552 446,239 713.00 

1970 40634 3.34 1.42 6.17 574 48.74 1 0 0 51.98 0 0 39.94 23324 641,015 776.77 

1971 43532 4.01 1.48 5.18 598 50.72 1 0 0 54.14 0 0 41.28 26032 570,287 835.93 

1972 45812 4.02 1.29 6.30 605 51.38 0 0 1 54.70 0 0 43.08 27716 582,284 940.17 

1973 34704 4.39 1.78 10.00 796 67.68 1 0 0 72.06 0 0 47.21 27624 749,121 1037.00 

1974 31497 4.57 1.87 9.10 1026 86.80 0 1 0 92.82 1 0 52.39 32316 590,601 1142.90 

1975 38292 4.59 1.94 7.11 918 77.64 1 0 0 83.05 1 0 55.79 35152 559,095 1259.83 

1976 34019 5.30 1.98 6.42 854 72.31 0 0 1 77.19 1 0 59.13 29052 648,584 1376.63 

1977 41477 5.28 2.13 7.98 826 70.12 0 1 0 74.76 1 0 69.93 34260 785,386 1544.17 

1978 40824 5.47 2.23 11.43 980 83.26 0 1 0 88.69 1 1 69.31 40008 814,116 1720.27 

1979 42189 5.23 2.10 15.93 1102 93.77 0 1 0 99.73 1 1 78.90 46492 710,250 1924.47 

1980 46293 5.49 2.72 18.29 1003 85.79 0 1 0 90.82 1 1 87.72 46432 649,473 2160.07 

1981 40506 5.23 3.05 16.59 1250 106.24 0 1 0 113.10 1 1 94.69 50632 521,597 2362.97 

1982 45615 7.39 3.17 11.11 1154 97.97 0 0 1 104.33 1 1 98.30 52640 589,119 2521.40 

1983 47138 6.83 3.18 11.46 1128 95.79 0 1 0 102.07 1 1 102.29 53172 733,254 2801.20 

1984 47405 5.74 3.71 10.85 1223 103.61 0 1 0 110.63 1 1 106.18 57976 814,810 3050.70 

1985 48193 7.62 3.17 9.16 1243 105.25 0 1 0 112.44 1 1 109.08 59904 838,415 3224.90 

1986 53282 7.78 3.05 7.68 1241 104.96 0 0 1 112.16 1 1 111.71 66123 950,918 3372.40 
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Year At  Pt Ct Rt Yt W D1 D2 D3 T Xt Lt Ft Qt Mt It 
1987 56795 7.00 3.02 8.74 1344 113.56 0 0 1 121.46 1 1 116.32 76333 896,775 3637.30 

1988 60719 9.37 3.26 10.84 1207 102.54 1 0 0 109.21 1 1 121.89 73288 799,676 3935.50 

1989 51613 7.29 3.23 10.18 1169 99.14 0 1 0 105.76 1 1 127.74 60336 850,796 4188.60 

1990 50415 9.40 3.24 9.29 1278 108.33 0 1 0 115.61 1 1 134.70 64430 776,715 4393.40 

1991 52003 8.81 3.57 6.87 1591 134.19 0 0 1 143.77 1 1 138.72 82736 779,504 4637.33 

1992 48393 8.70 3.43 6.00 1483 125.09 0 1 0 134.09 1 1 143.07 71767 403,702 4857.43 

1993 50605 7.14 3.45 6.31 1294 109.24 0 1 0 117.02 1 1 146.70 65483 882,938 5045.87 

1994 49010 7.25 3.47 8.66 1330 112.45 0 1 0 120.29 1 1 150.90 65183 829,007 5340.10 

1995 45493 7.82 3.54 8.43 1250 105.82 0 1 0 113.07 1 1 159.42 56866 1,307,479 5569.90 

1996 37296 8.08 3.54 8.34 1468 124.00 0 1 0 177.00 1 1 162.04 54750 1,511,659 5869.80 

1997 39307 9.05 3.53 8.50 1427 120.67 0 0 1 171.96 1 1 164.92 56091 1,456,391 6244.70 

1998 43393 7.50 3.61 7.81 1427 120.49 1 0 0 154.85 1 1 169.98 61922 1,618,308 6582.47 

1999 43214 6.73 3.54 8.77 1439 121.50 1 0 0 130.13 1 1 175.76 62185 1,356,162 7015.53 

2000 43811 9.26 3.51 8.49 1373 116.19 0 1 0 124.18 1 1 178.33 60152 1,300,466 7369.67 

2001 43486 8.07 3.35 4.89 1351 113.94 0 1 0 122.16 1 1 182.61 58750 1,497,419 7706.00 

2002 43000 9.70 3.50 4.31 1320 111.46 0 0 1 119.29 1 1 186.60 56760 1,594,876 7987.60 

2003 42000 8.28 3.54 4.00 1440 121.32 0 1 0 130.19 1 1 192.39 60480 1,731,002 8458.87 
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APPENDIX C 
TSP PROGRAM 

OPTIONS MEMORY=175 LIMWARN=2 SIGNIF=4 LIMPRN=95 LINLIM=1500 
LEFTMG=0; 
 
READ (FILE='a:TomARDat.XLS' FORMAT=EXCEL); 
 
SMPL 2,48; 
 
? The columns in TomARDat.XLS are: 
? Year = Years 1956-2004 (49 obs) CT missing for 2004 (48 obs) 
? At = the acreage of harvested tomatoes 
? Pt = the price per 25 pound carton of tomatoes 
? Ct = the harvest cost per 25 pound carton of tomatoes 
? Rt = the prime interest rate during the harvest decision phase (October-June) 
? Yt = the yield of 25 pound cartons per harvested acre 
? Wt = precipitation 
? D1 = dummy, 1 for the El Ni?o climate effect, zero otherwise 
? D2 = dummy, 1 for the La Ni?a climate effect, zero otherwise 
? Tt = the temperature 
? Xt = dummy, the adoption of plastic mulch 
? Lt = dummy, the adoption of methyl bromide 
? Ft = the consumer price deflator (October-June) 
? Qt = the quantity of shipped Florida tomatoes 
? Mt = the quantity of imported tomatoes (October-June) from Mexico 
? It = the total consumer disposable income (October-June)                      
? D3 = dummy, for neutral climate effect, 0 otherwise 
 
At = At/1000; 
Yt = Yt/10; 
Qt = Qt/1000; 
Mt = Mt/10000; 
It = It/100; 
 
?print YEAR AT PT CT RT YT WT D1 D2 TT XT LT FT QT MT IT D3; 
 
 
tp = year; 
ltp = log(tp); 
 
TREND TIME; 
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LAt = LOG(At); 
LPt = LOG(Pt); 
LCt = LOG(Ct); 
LRt = LOG(Rt); 
LYt = LOG(Yt); 
LWt = LOG(Wt); 
LTt = LOG(Tt); 
LFt = LOG(Ft); 
LQt = LOG(Qt); 
LMt = LOG(Mt); 
LIt = LOG(It); 
 
 
ft = ft/100; 
PF  = (PT/FT);   ? Deflated price 
PC  = PT/CT;     ? Price per carton/Harvest cost per carton 
CF  = (CT/FT);   ? Deflated cost 
PCF = (PF/CF); 
IF  = (IT/FT);   ? Deflated income 
 
LPF  = LOG(PF); 
LPC  = LOG(PT/CT); 
LCF  = LOG(CF); 
LPCF = LOG(PF/CF); 
LIF  = LOG(IF); 
 
 
? MSD(TERSE,CORR) YEAR AT PT CT RT YT WT D1 D2 TT XT LT FT QT MT IT; 
? HIST(DISCRETE) D1 D2 XT LT; 
 
 
PROC LIN; 
 
frml acres, AT = a + apt*pt + act*ct + arho*(AT(-1) - a - apt*pt(-1) - act*ct(-1)); 
frml yield, YT = y + yptct*(pt/ct) + yd1*d1 + yd2*d2 + yxt*xt + ylt*lt + yrho*(YT(-1) - 
y - yptct*(pt(-1)/ct(-1)) 
                 - yd1*d1(-1) - yd2*d2(-1) - yxt*xt(-1) - ylt*lt(-1)); 
frml demand,(pt/ft) - (d + dqt*qt + dmt*mt + dif*if  
             + drho*((pt(-1)/ft(-1)) - (d + dqt*qt(-1) + dmt*mt(-1) + dif*if(-1)))); 
IDENT QUANT  QT = AT * YT; 
 
 
SMPL 4,48; ?obs was an outlier; 
param a apt act arho y yptct yd1 yd2 yxt ylt yrho d dqt dmt dif drho; 
FIML (ENDOG = (AT YT Pt QT),maxit=500) acres yield demand quant; 
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ENDPROC LIN; 
 
PROC aLOG; 
 
frml acres, lAT - (la + lapt*lpt + lact*lct); 
frml yield, lYT - (ly + lyptct*(lpt - lct) + lyd1*d1 + lyd2*d2 + lyxt*xt + lylt*lt); 
frml demand,(lpt-lft) - (ld + ldqt*lQT + ldmt*lmt + ldif*lif); 
IDENT QUANT  lQT = lAT + lYT; 
 
SMPL 4,48; ?obs was an outlier; 
param la lapt lact ly lyptct lyd1 lyd2 lyxt lylt ld ldqt ldmt ldif; 
FIML (ENDOG = (lAT lYT lPt lQT),maxit=500) acres yield demand quant; 
 
 
ENDPROC aLOG; 
 
PROC lfinal; 
 
frml acres, lAT - (la + lapt*lpt + lact*lct 
                + arho*(lAT(-1) - (la + lapt*lpt(-1) + lact*lct(-1)))); 
frml yield, lYT - (ly + lyptct*(lpt - lct) + lyd1*d1 + lyd2*d2 + lyxt*xt + lylt*lt 
                + yrho*(lYT(-1) - (ly + lyptct*(lpt(-1) - lct(-1)) + lyd1*d1(-1) 
                + lyd2*d2(-1) + lyxt*xt(-1) + lylt*lt(-1)))); 
frml demand,(lpt-lft) - (ld + ldqt*lQT + ldmt*lmt + ldif*lif 
                       + drho*((lpt(-1)-lft(-1)) - (ld + ldqt*lQT(-1) + ldmt*lmt(-1) + ldif*lif(-
1)))); 
IDENT QUANT  lQT = lAT + lYT; 
 
SMPL 4,48; ?obs 2 was an outlier; 
param la lapt lact arho ly lyptct lyd1 lyd2 lyxt lylt yrho ld ldqt ldmt ldif drho; 
FIML (ENDOG = (lAT lYT lPt lQT),maxit=500) acres yield demand quant; 
 
ENDPROC lfinal; 
 
lin; 
alog; 
lfinal; 
 
 
END 
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