

Economic Decision Making for Reproduction

2010 Dairy Cattle Reproduction Conference St. Paul, Minnesota – November 11 – 12, 2010

V. E. Cabrera and J. O. Giordano University of Wisconsin-Madison Introduction

- Direct relationship between reproduction and profitability
- Improving reproductive efficiency should improve profitability
- Economic evaluation of reproductive programs is a frequent question from producers, consultants, and veterinarians
- Answer depends on particular dairy farm and market conditions

- Reproductive economic evaluation is difficult
 Number of factors interacting dynamically
 - Lactation length and magnitude
 - Culling and mortality risk
 - Cost of reproductive program
 - Number of newborn

Very Important Economic Factors

Several methods could be used to assess the value of reproductive programs

- Partial cash flow (Meadows et al., 2005)
- Marginal net revenue (Groenendaal et al., 2004)
- Markov-chains (none)
- Dynamic programming (De Vries, 2006)

Markov-chains could be a solid framework

Methodology should be: 1) Inclusive and 2) Practical

- **Daily** Markov-chains framework
 - Can handle very <u>detailed</u> information
 - Reproductive programs TAI and HD
 Herd population dynamics Transition matrices
 - Economics

Prices and costs

• Can assess the interactions of all factors in a dynamic way

- Assess the reproductive and economic performance of reproductive programs
- Compare programs using HD, TAI, or both
- Explore the optimal length of the VWP
- Evaluate the interaction between market conditions and reproductive efficiency
- Estimate the impact of adopting new technologies (e.g., ultrasound)

1. Describe the development of a daily dairy herd Markov-chain model

Methodological objective

- **Objectives**
- 2. Perform an experiment to evaluate 3 reproductive programs using the developed model

A herd follows <u>daily</u> probabilistic Markovchain of events

Month in	Month in Pregnancy																
Milk	0	1	2	3	4	5	6	7	8	9			Re	evenues	& Costs	(\$)	
					Lacta	tion 1					Cull Cows		IOFC	Cull	Repro	Calves	
1											0.14		453.19	-66.23	0.00	0.00	
2	Z										0.09		594.15	-43.03	91.01	0.00	
3	26	1.56									0.05		616.65	-26.48	72.57	0.00	
4	2.0	05	0.56								0.05		603.35	-22.81	58.31	0.00	
5	1.67		0.45	0.54							0.04		577.58	-19.77	47.40	0.00	
6	1.37	0.30	0.36	0.43	0.52						0.04	1	548.93	-18.17	38.91	0.00	
7	1.13	0.24	0.29	0.35	0.42	0.51					0.04	ษ	515.73	-17.44	32.13	0.00	
8	0.94	0.20	0.24	0.28	0.34	0.41	0.50				0.03	ヒ	480.32	-16.79	26.54	0.00	
9	0.77	0.16	0.20	0.23	0.27	0.33	0.41	0.50			0.03		444.20	-16.82	21.92	0.00	
10	0.64	0.14	0.16	0.19		bori	ting	0.40	0.49		0.04	Σ	305.35	-17.70	18.07	0.00	
11	0.52	0.11	0.13	0.16				0.32	0.40	0.49	0.04	σ	196.86	-19.31	14.85	97.58	
12	0.43		0.11	0.13	0.15	0.18	0.22	0.26	0.32	0.39	0.04		152.38	-17.76	0.00	78.41	
13	0.42		0.09	0.11	0.13	0.15	0.18	0.21	0.26		04	a	117.16	-17.53	0.00	62.99	
14	0.41	ษ		0.09	0.10	0.12	0.15	0.18	0.21		64		88.57	-18.74	0.00	51.22	
15	0.38	L L			0.08	0.10	0.12	0.15	0.18		≥ 04	<u> </u>	65.09	-19.10	0.00	42.02	
16	0.35	eg				0.08	0.10	0.12	0.14	0.1	rd 04		46.03	-18.82	0.00	34.63	
17	0.32	Ľ					0.08	0.10	0.12	0.1	.04	n U	31.13	-18.83	0.00	28.57	
18	0.29	Ω						0.08	0.10	0.12	0.04		19.51	-18.95	0.00	23.54	
19	0.25	Ŋ							0.08	0.10	0.26		10.50	-17.49	0.00	19.33	
20	0.00	. <u> </u>								0.08	0.00		-6.62	-0.53	0.00	15.78	
21		E						S	tart	ina	an	evt	lact	atio	n 🕑	0.00	
22		O							turu	ing				acro	00	0.00	
23		e C									0.00		0.00	0.00	0.00	0.00	isio
24		m									0.00		0.00	0.00	0.00	0.00	
25											0.00		0.00	0.00	0.00	0.00	1900

• The daily Markov-chains matrix

- 1020 DIM x 282 d gestation x 9 lactations
- The maximum day for breeding: DIM = 738
- 1.87 million possible cow states

State = parity, DIM, days in gestation

• Value of a reproductive program

- Daily aggregation for each cow in the herd of:
 - 1. Milk income over feed cost
 - 2. Culling cost
 - 3. Mortality cost
 - 4. Income from calves
 - 5. Cost of reproductive program

Very Important Economic Factors

• Final herd structure determined by:

- Reproductive program
- Involuntary culling
- Death
- Abortion
- <u>Reproductive failure</u> voluntary culling

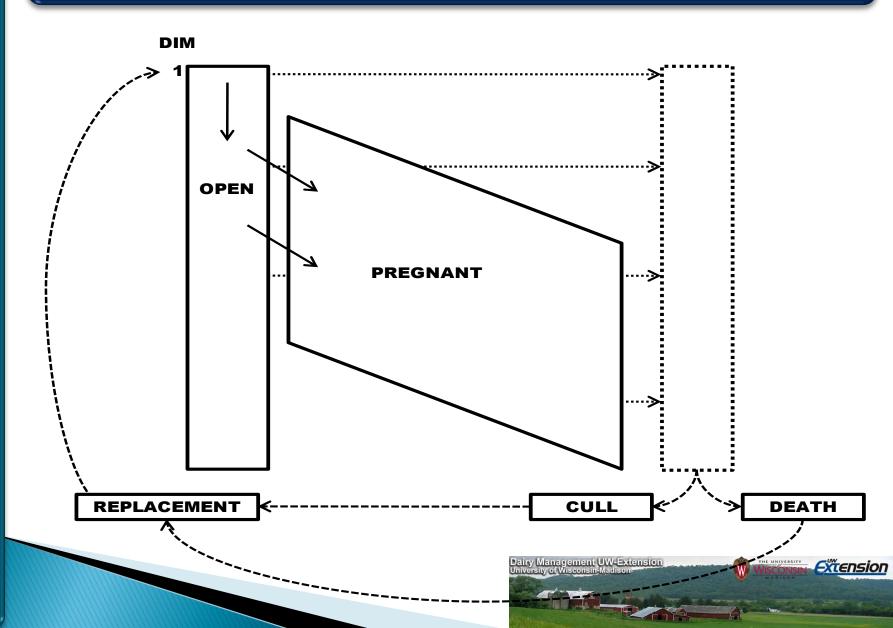
Cut-off DIM for breeding + Milk production threshold Lactation curves determine milk production according to:

- Lactation number
- DIM
- Reproductive status
- Cows leaving the herd are replaced the next day (Meadows et al., 2005; De Vries, 2006; Cabrera, 2010)

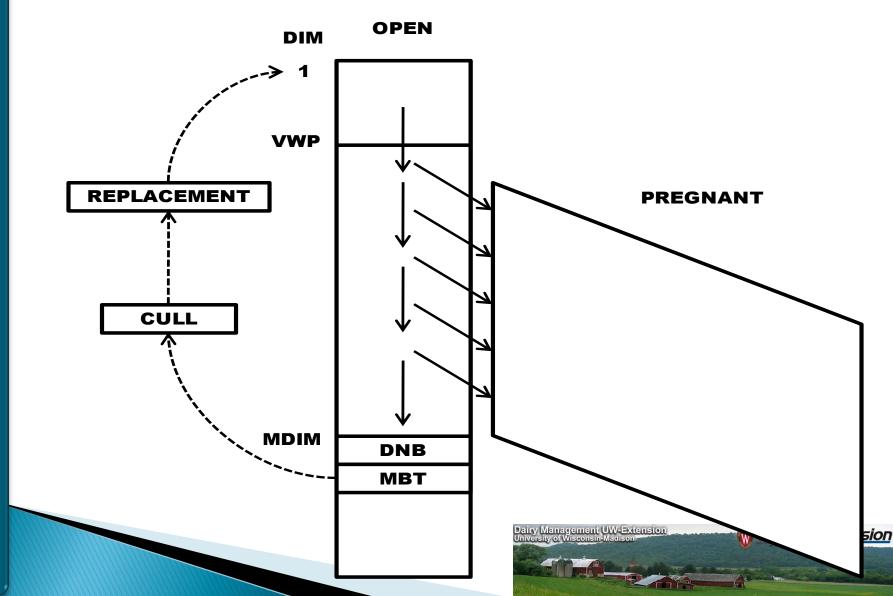
Herd population remains constant

 Problem solved by iterations until the herd population reaches <u>steady state</u>

Steady state = number or proportion of cows in a state do not change (any more) from one iteration to the next

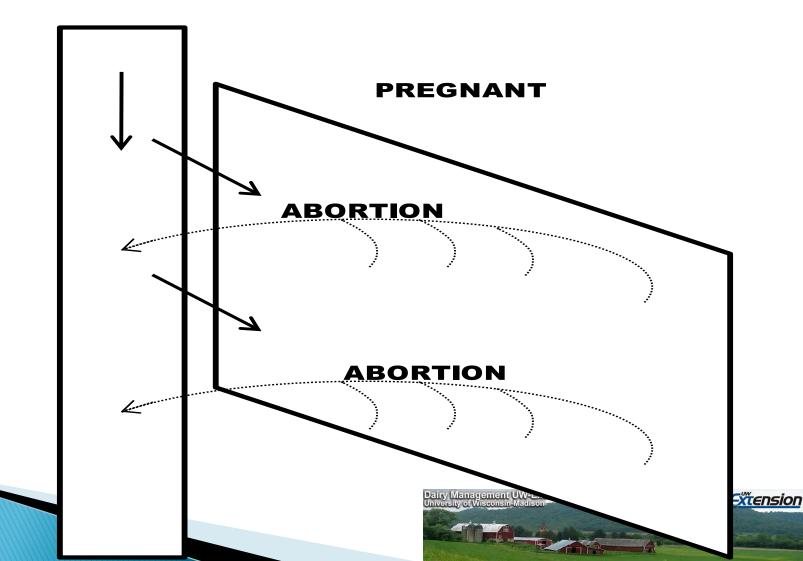

2.5 million interacting equations in each iteration

Management UW-


 Daily <u>transition probabilities</u> define the probabilities of culling, mortality, pregnancy, and abortion

and Methods Materials

Representation of the involuntary culling and death in the Markov-chain structure for <u>one parity</u>



Representation of the breeding process in the Markov-chain structure for <u>one parity</u>

Representation of the abortion process in the Markov-chain structure for <u>one parity</u>

OPEN

Characteristics of studied reproductive programs

	Program 1	Program 2	Program 3
Type of program	100 % HD	100 % TAI	HD + TAI
1 st Service Program	Estrous Detection	Presynch– Ovsynch	Presynch– Ovsynch
2 nd Service Program	Estrous Detection	D32 Resynch	D32 Resynch
Voluntary Waiting Period (HD) (d)	50		50
Voluntary Waiting Period (TAI) (d)		72	72
Interbreeding Interval (d)	21	42	42
Maximum DIM for breeding (d)	330		
Milk production to remain in herd (kg)	27.24		

Characteristics of studied reproductive programs

	Program 1	Program 2	Program 3
Type of program	100 % HD	100 % TAI	HD + TAI
1st Sarvica Program	Estrous	Presynch-	Presynch-
1 st Service Program	Detection	Ovsynch	Ovsynch
2nd Sarvica Program	Estrous	D32	D32
2 nd Service Program	Detection	Resynch	Resynch
Bred at estrus before 1 st TAI (%)			60
CR Bred at estrus before 1 st TAI (%)			28
Bred at Estrus after1 st TAI (%)			60
CR Bred at estrus after1 st TAI (%)			28

Characteristics of studied reproductive programs

Experiment

	Program 1	Program 2	Program 3	
Type of program	100 % HD	100 % TAI	HD + TAI	
1 st Service Program	Estrous Detection	Presynch– Ovsynch	Presynch– Ovsynch	
2 nd Service Program	Estrous Detection	D32 Resynch	D32 Resynch	
CR 1 st Service TAI (%)		42	32	
CR 2 nd + Service TAI (%)		30	28	
HD rate 1 st AI (%)	50			
CR 1 st AI (%)	30			
HD rate $\geq 2^{nd}$ AI (%)	50	Same for a	lactations	
$CR \ge 2^{nd} AI (\%)$	28	Same for al	ractations	

Reproductive	Hormones	Labor	Total
Program		Cost ¹	Cost ²
	(\$/cow)	

Presynch-Ovsynch	10.50	3.50	30.23
D32 Resynch	5.50	2.00	23.73
Breeding at estrus		0.88	17.11

¹Labor cost included hormone administration for Presynch– Ovsynch, D32 Resynch, and estrous detection for breeding at estrus program.

²Total cost per AI: <u>\$10</u> including semen unit and labor. Labor cost to perform pregnancy diagnosis: <u>\$6.23</u>

Milk Production (MP)

$$MP_{DIM} = a * \left(1 - \frac{e^{\left(\frac{c - DIM}{b}\right)}}{2}\right) * e^{-d * DIM}$$

MilkBot Model (Ehrlrich, 2009)

Notation	Units	Definition
a	kg/cow/d	Scale
b		Ramp
C		Offset
d		Decay

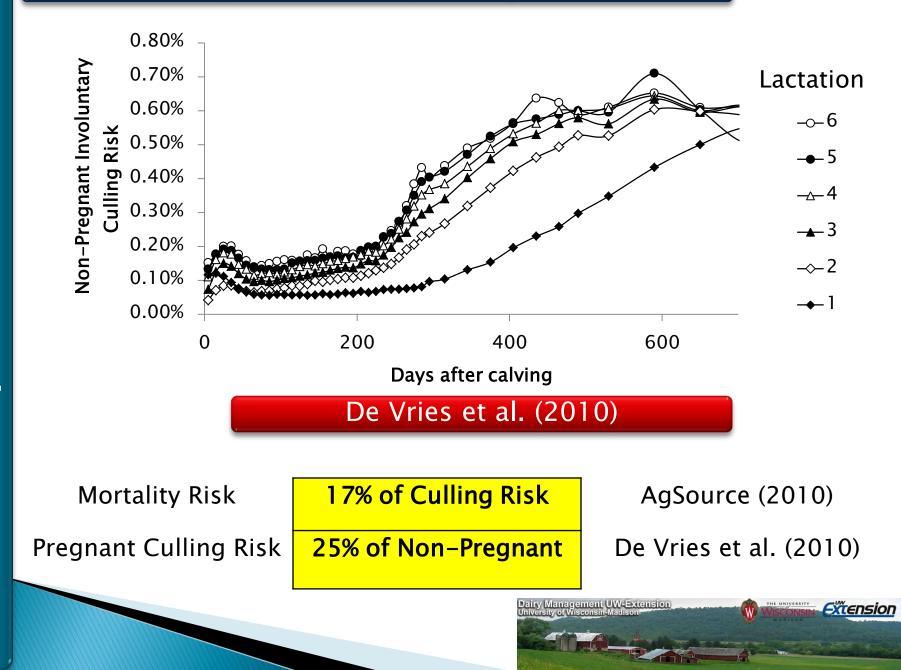
Dairy Management UW-Extension University of Wisconsin-Madison THE UNIVERSITY

Extension

Milk Parameters to Define Lactation Curves							
MilkBot Parameter	First Lactation	Seco Lactat			Third ctation	_	
(a) Scale (kg/cow/d)	49.12	94.4	·0	8	9.16		
(b) Ramp	31.16	86.0	6	6	5.06		
(c) Offset	-2.67	9.2	6	5	5.71		
(d) Decay	0.0011	0.00	36	0.	0033		
Observed (dots) vs. Predicted (lines) Lactation Curves							
Month in Duonnon au	1 2	2 4	F	C	7	0	
Month in Pregnancy	1 2	3 4	5	6 10	7	8	
Milk Depression (%)		0 0	2	10	15		-
De Vries (2006)							

Experiment

$DMI_{DIM} = 2\% * BW + 0.3 * FCM$


$FCM = 4\% * MP_{DMI} + 15 * FAT$

Van de Haar et al. (1992)

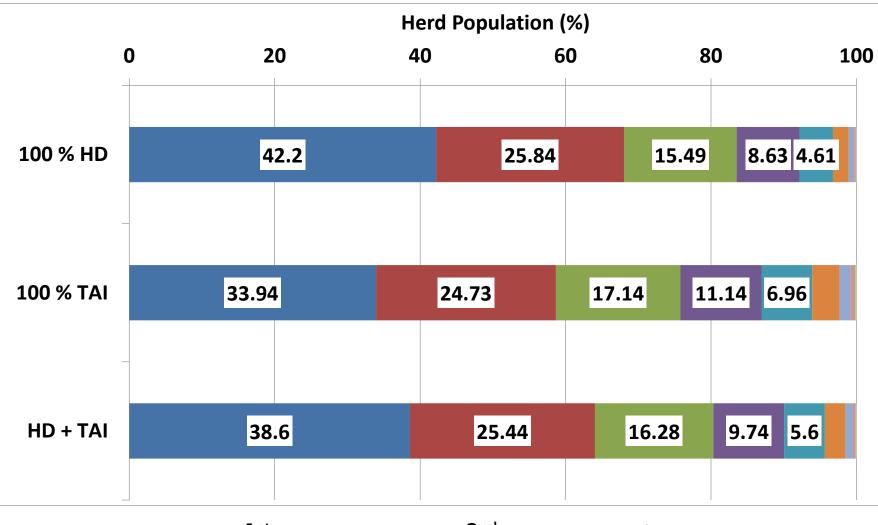
Notation	Units	Definition
BW	kg/cow	Body Weight
FCM	%	Fat Corrected Milk
FAT	%	Milk Butterfat

Probability of Involuntary Culling and Death

Experiment

Milk Price	Economi Feed Dry Matter	c Variables Heifer Rep.	Salvage Value	New Born Value
\$/cwt	\$/cwt	\$/animal	\$/animal	\$/animal
15	10	1,400	500	300
			Dairy Management UW-Extension University of Wisconsin-Madison	

Extension


Steady State Herd Structure

	Program 1	Program 2	Program 3
Type of program	100 % HD	100 % TAI	HD + TAI
1 st parity cows (%)	42.20	33.94	38.60
2 nd parity cows (%)	25.84	24.73	25.44
3 rd parity cows (%)	15.49	17.14	16.28
4 th parity cows (%)	8.63	11.14	9.74
5 th parity cows (%)	4.61	6.96	5.60
6 th parity cows (%)	2.17	3.78	2.82
7 th parity cows (%)	0.74	1.51	1.04
8 th parity cows (%)	0.25	0.60	0.38
9 th parity cows (%)	0.09	0.24	0.14

Results

Steady State Herd Structure

1st par.

2nd par. 3rd par. 4th

4th par. 5th par.

Results

Herd Reproductive Performance

			I
	Program 1	Program 2	Program 3
	100 % HD	100 % TAI	HD + TAI
50 d VWP 21–d PR (%)	12	17	15
72 d VWP 21–d PR (%)		21	
Herd pregnant cows ¹ (%)	44.65	52.12	48.24
Days open ² (d)	147	130	134
Average DIM ³ (d)	187	178	182
Lactating population (%)	90	88	89

¹Animals that were \geq 35 d in gestation

Results

²Average number of days in milk at which cows became pregnant

³Average number of days in milk of all herd

Economic Value of Reproductive Programs

Results

Program 1Program 2Program 3100 % HD100 % TAIHD + TAI

-----\$/cow/yr-----

Value of			
reproductive	2,546.63	<u>2,584.29</u>	2,571.19
program			

Value over 100% HD		37.66	24.56
--------------------	--	-------	-------

Income from newborn	187.59	<u>217.34</u>	202.04
Culling and mortality cost	-191.57	<u>-171.76</u>	-183.26
Reproductive program cost	<u>-46.47</u>	-66.56	-50.07
Milk income over feed cost	2,597.08	<u>2,605.26</u>	2,602.48

Discussion

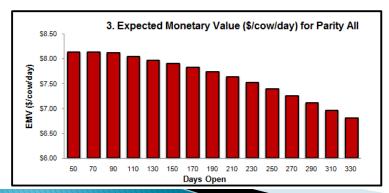
- Feasibility of simulating a dairy herd on a daily basis
 - Better than weekly or monthly models
 - Better than event-driven models
- A daily model overcomes previous models limitations
- Challenge lies in the dimensions and the computational resources needed to solve it

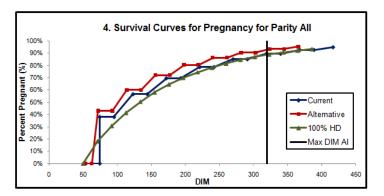
• Simpler models could still be useful for practical decision-making DairyMGT.info

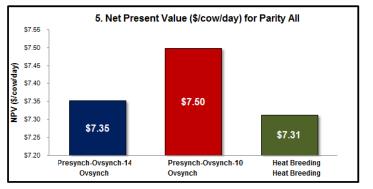
Extension

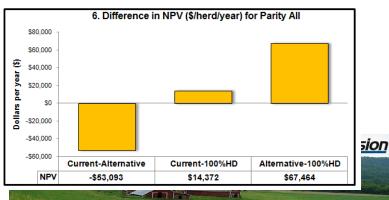
WISCONSIN

UW-Dairy Repros		
Victor E. Cabrera & Julio O. Giordano	l	
Department of Dainy Science		


......


1. Productive and Economic Parameters Summary


Lacating Cows in Parity All	(#)	1000
Rolling Herd Average (RHA)	(lb/cow/y)	28000
Milk Price	(\$/cwt)	14.50
Average Value New Born	(\$)	90
Heifer Replacement Value	(\$)	1,000
Salvage Value	(\$)	700


2. Reproductive Programs Summary

-	Current	Alternative	Baseline
1 st Service Postpartum	Presynch-Ovsynch-14	Presynch-Ovsynch-10	Heat Breeding
2 nd and Following Services	Ovsynch	Ovsynch	Heat Breeding
Voluntary Waiting Period	53d	53d	50d
Maximum DIM for Breeding		320d	
DIM 1st TAI	74d	72d	
Interbreeding Interval	49d	42d	21d
Heat Bred Before 1 st TAI	0%	0%	55%
CR Heat Bred Before 1 st TAI	0%	0%	33%
Heat Bred After 1 st TAI	0%	0%	55%
CR Heat Bred After 1 st TAI	0%	0%	28%
CR 1 st Service TAI	38%	43%	
CR 2 nd + Services TAI	30%	30%	
Cost 1st Service Breeding	\$34.00	\$33.89	
Cost Resynch Breedings	\$27.33	\$29.33	
Cost Heat Breedings	\$16.61	\$18.16	\$17.00
Pregnancy Diagnosis Method	Palpation	Ultrasound	Palpation
Pregnancy Diagnosis Cost	\$6.56	\$8.16	\$7.00

- Under the bio-economic scenarios included in the experiment: 100 % TAI > TAI + HD > 100 % HD
- Economic evaluation of reproductive programs is complex. Previous models have failed to include the precision needed
- The challenge of translating the daily model to a user-friendly application remains

 This project was supported by Agriculture and Food Research Initiative Competitive Grant No. 2010-85122-20612 from the USDA National Institute of Food and Agriculture

United States Department of Agriculture National Institute of Food and Agriculture

Management UW-Extension

 Thanks to Dr. Paul Fricke and Dr. Milo Wiltbank for their comments and feedback on this study

Thanks

Ê

服

盆

m