Stochastic evaluation of reproductive performance under farms' variable conditions

THE UNI WISCO MAD

A.S. Kalantari and V.E. Cabrera Department of Dairy Science University of Wisconsin Madison

Introduction:

- Reproductive performance affects profitability of farms
- There are many biological and management factors that also affect farm's profitability
- Therefore, different farms with the same reproductive performance could have different economic outcomes.

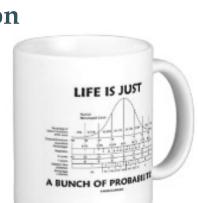
Introduction:

• Markov chain could be used to quantify the effect of various reproductive performances and interaction with other factors

• Limitation: This method produces deterministic results and produces expected value from the input parameters

Introducing stochastic elements into a Markov chain simulation model.

Evaluating the economic impact of reproductive performance under farms' variable conditions.

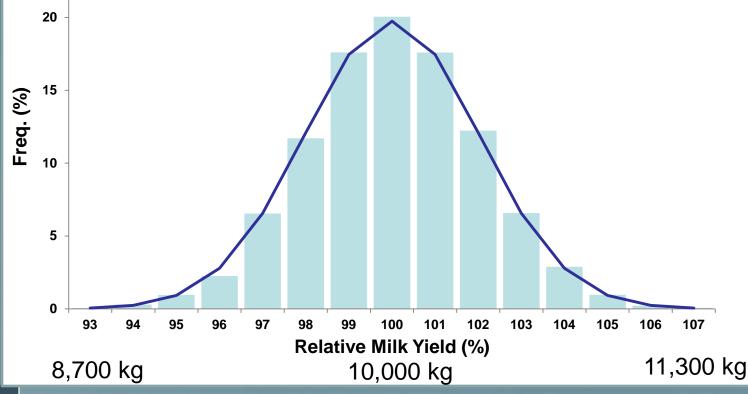


- ✓ A dairy herd was modeled using Markov chain simulation with 21-d stage length
- ✓ Cows were described based on DIM, DIP and parity
- Uncertainty was introduced one by one (stepwise refinement) into the Markov chain model

M & M:

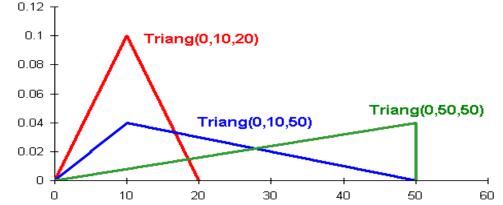
Different ways to introduce randomness:

- Fitting Polynomial Regression model:
 - Involuntary Culling
 - Abortion
- Using Distributions:
 - Normal Distribution: Milk production
 - Triangular Distribution:
 - 21-d Pregnancy rate


5th order Polynomial Regression (Binomial Family) white noise (~N(0,sd(predicted residual))

Example for second lactation cows Risk of Culling(%) S

Days in Milk (d)


M & M:

- ✓ 15 milk classes with respect to the average milk production of 10,000 kg/yr (estimated using MilkBot[®] model)
- ²⁵ ✓ Random error added to individual milk production curves following N~(0,0.45²)

M & M:

- ✓ Reproductive performance was modeled using 21-d PR
- ✓ Triangular distribution to include the variation between and within lactations
- ✓ Average of 15% 21-d PR was used as the mode and 5% below and above this average as the Max and Min of the distribution

Herd economics after introducing randomness (Expected Value(\$/cow/yr) ± SD based on 10,000 rep.)

Run	Net Return	Milk Sales	Feed Costs	Calf Sales	Culling Costs	Rep. Costs
NR	2372	3400	-794	65	-161	-138
I	±3.24	±1.25	±0.25	± 0.02	± 2.66	± 0.08
I+A	±3.24	±1.25	±0.25	± 1.06	± 2.66	± 0.08
I+P	± 4.41	±1.62	± 0.37	± 0.54	±2.72	± 1.43
I+A+P	± 4.42	±1.61	± 0.38	± 0.54	±2.72	± 1.44
I+A+P+M	±56.9	±65.3	±6.97	± 0.58	± 3.36	±1.51

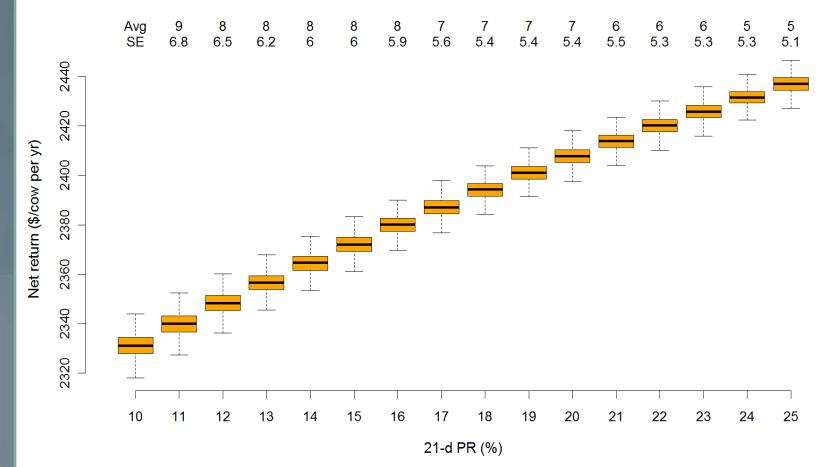
NR = No randomness (Expected Value) I+A =Inv. culling + Abortion

I+A+P = Inv. Culling + Abortion + Pregnancy rate

I = Inv. Culling

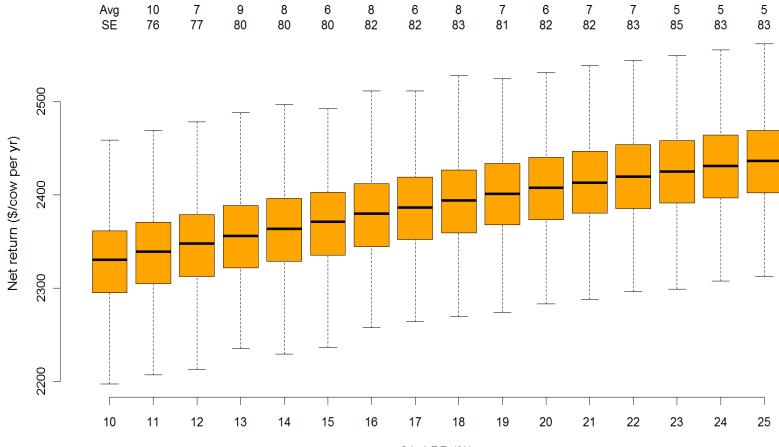
I+P = Inv. Culling + Pregnancy rate

I+A+P +M= Inv. Culling + Abortion + Pregnancy rate + Milk prod. level



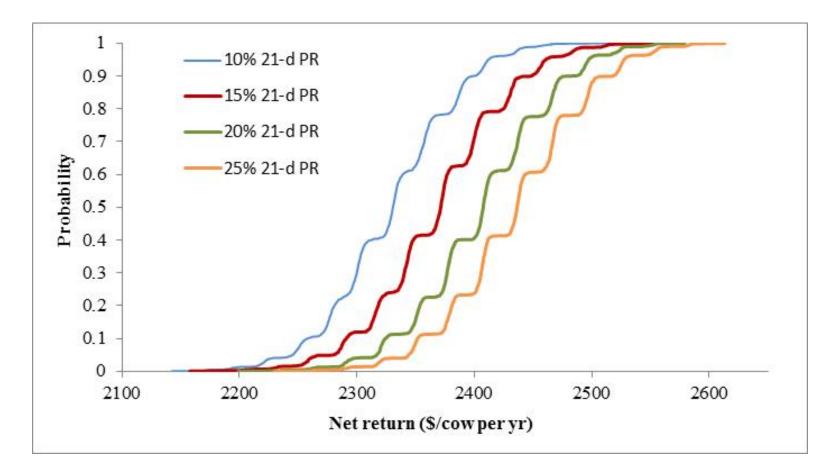
Herd structure after introducing randomness (Expected value ± SD based on 10,000 rep.)

Run	Parity 1 (%)	Parity 2 (%)	Parity >= 3 (%)	Total leaving (%)	21-d PR(%)
NR	35.7	24.9	16.3	40.4	15
Ι	± 0.28	± 0.16	± 0.12	± 0.59	± 0
I+A	± 0.28	±0.16	± 0.12	± 0.59	± 0.7
I+P	± 0.55	±0.32	±0.25	± 0.88	± 0.7
I+A+P	± 0.55	±0.32	±0.25	± 0.88	± 0.7
I+A+P+M	± 0.56	±0.32	±0.25	± 1.18	±0.7


NR = No randomness (Expected value)	I = Inv. Culling		
I+A =Inv. culling + Abortion	I+P = Inv. Culling + Pregnancy rate		
I+A+P = Inv. Culling + Abortion + Pregnancy rate	I+A+P +M= Inv. Culling + Abortion + Pregnancy rate + Milk prod. level		

• Net return variation without a variation in Milk production, 2,000 Rep.

Net return variation with Milk production variation, 2,000 Rep.



21-d PR (%)

R

Results:

Cumulative density functions for four 21-d PR performances when all parameters are random

Conclusion:

• Net return without any stochastic element resembled the expected value calculated from the original Markov chain model.

• The model was able to capture the inherent variability within and between herds

• As expected, gain of increasing 21-d PR followed the law of diminishing net returns

Acknowledgments:

United States Department of Agriculture National Institute of Food and Agriculture

- This project was supported by Agriculture and Food Research Initiative Competitive Grant no. 2010-85122-20612 from the USDA National Institute of Food and Agriculture.
- This research was also supported by Hatch project to V.E.C. WIS01577.

Variables name	Average value	Source
Input herd variables		
Herd turnover %/yr	35	De Vries et al. (2010)
Milk production level kg/yr	10,000	DHI benchmark ² (2013)
Dry period d	60	DHI benchmark ² (2013)
Last day to breed a cow d	294	Giordano et al. (2012)
Milk threshold kg/cow per d	23	Giordano et al. (2012)
Pregnancy loss %/lactation	8.2	De Vries (2006)
Pregnancy rate %/yr	14.6	DHI benchmark ² (2013)
Mortality ³ %/yr	20	Pinedo et al. (2010)
Economic variables		
Replacement cost, \$/cow	1,300	
Reproductive cost \$/service	20	
Carcass value, \$/kg	0.38	
Calf value, \$/calf	100	Cabrera (2012)
Milk price, \$/kg	0.35	
Feed price for lactating cow, \$/kg	0.22	
Feed price for dry cows, \$/kg	0.18	