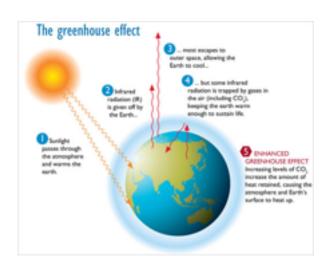


Implementation of greenhouse gas mitigation strategies on organic, grazing and conventional dairy farms

Victor E. Cabrera and Marion Dutreuil University of Wisconsin-Madison

Introduction


GHG emissions need to be reduced

Milk production

 Estimated to be responsible of 4% of anthropogenic GHG

Livestock operations

One of largest sources of agricultural GHG

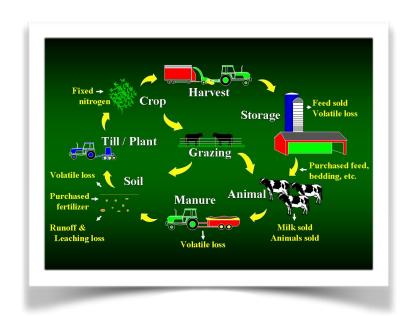
Whole farm system approach

High interaction among system components

Introduction

Simulation is a powerful tool

Feasible research enterprise


 Field trials are unpractical or impossible

Projections and trends

More valid than precise numbers

Scenario analysis

Allows to respond "whatif" questions

Objectives

Can GHG emissions be economically reduced?

Compare GHG emissions and economics among dairy farm systems

- Organic
- Grazing
- Conventional

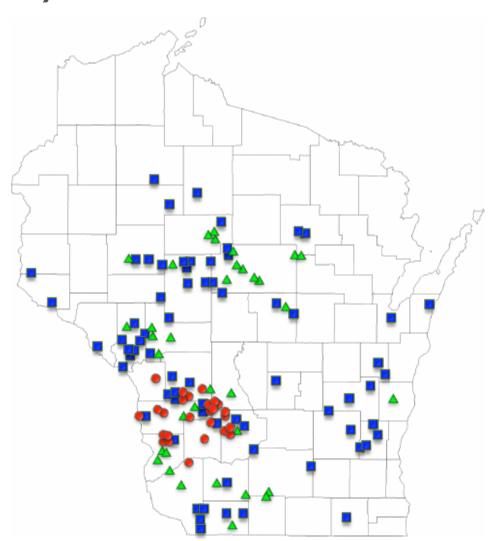
Asses the impact of management strategies on GHG emissions and net return

- Feeding strategies
- Manure management

Surveying

Interdisciplinary and comprehensive questionnaire (year 2010)

- Farm structure
- Labor
- Herd management
- Feeding
- Cropping
- Economics

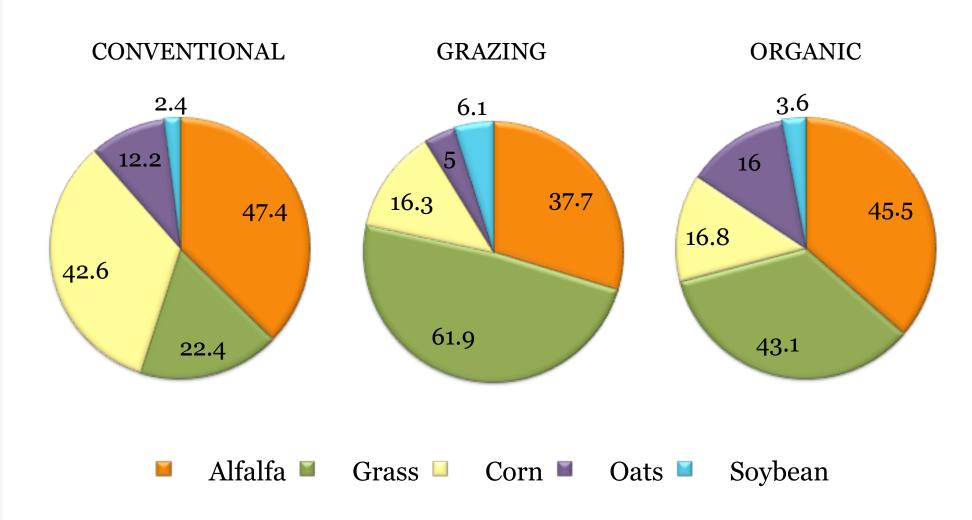

Wisconsin official lists of dairy cattle milk producers

- Organic = certified
- Grazing >30% DMI pasture
- Conventional = others

Surveyed farms (Wisconsin)

Farms used for defining representative farms

- 69 organic
- 30 grazing
- 27 conventional


Scaled farms

All farms in a system were scaled to averages

- 127 ha
 - 79 ha owned
 - 48 ha rented
- 85 adult cows (milking and dry)

	Scaled	CON	GRA	ORG
# cows	85	128	94	74
Hectares	127	162	121	119

Simulated farms

Simulated farms

	CON	GRA	ORG
First lactation cows (%)	36	30	31
Milk production (L/cow per year)	9,820	7,256	6,159
Milk price (\$/hL)	35.99	37.52	56.20
Grazing strategy	Older heifers and dry cows	All weaned animals	All weaned animals
Housing facilities	Free stall barn	Tie stall barn	Tie stall barn
Manure storage	Top-loaded lined earthen basin	No storage (daily haul)	No storage (daily haul)

Management strategies for CONVENTIONAL

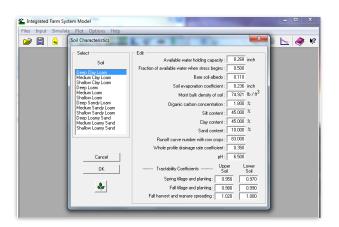
Scenarios

- Grazing to lactating with no decrease in milk production
- 2. Grazing offered to lactating cows with 5% decrease in milk production
- 3. Incorporation of manure the same day of application and addition of a 12-month covered tank
- 4. Combination of scenarios 1 and 3
- 5. Combination of scenarios 2 and 3

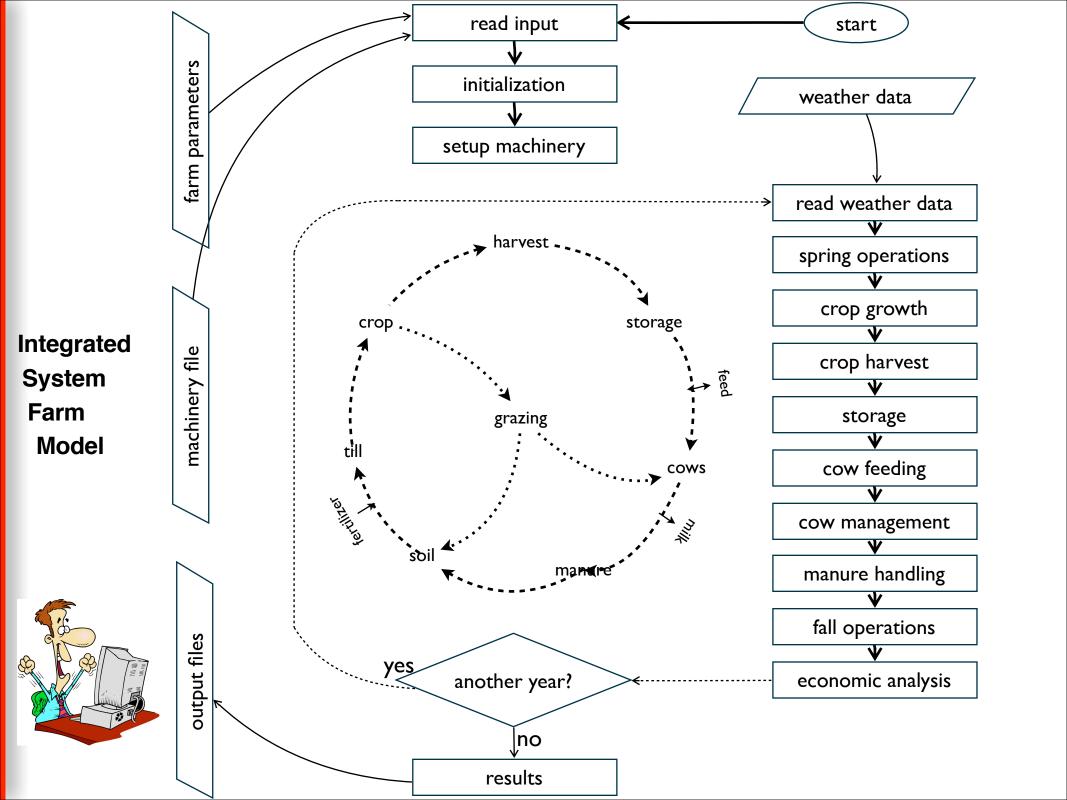
Strategies for ORGANIC and GRAZING

Scenarios

- 6. Decrease forage to grain ratio with a 5% increase in milk production
- 7. Decrease forage to grain ratio with a 10% increase in milk production
- 8. Incorporation of manure the same day of application and addition of a 12-month covered tank
- 9. Combination of scenarios 6 and 8
- 10. Combination of scenarios 7 and 8



Integrated Farm System Model (IFSM)


Integrates major biophysical processes in a dairy farm

- 1.Livestock
- 2.Crops
- 3. Grazing
- 4.Weather
- 5. Machinery
- 6.Feed storage
- 7.Soils
- 8. Manure and nutrient
- 9. Economics
- 10. Tillage and planting

GHG sink an sources at the farm level

- Housing
- Manure storage
- Feed production
- Grazing
- Fuel combustion
- Secondary sources

Results

Baseline outcomes: Farm system differences

	CON	GRA	ORG
Milk production	9,735	7,256	6,159
Feed costs (\$)	182,124	134,133	149,744
Total income (\$)	357,151	288,603	350,185
Net return to management (\$)	23,895	14,439	59,120
Net return to management (\$/1,000 kg milk)	28.9	23.4	112.9
Net emission (kg CO ₂ eq/kg milk)	0.58	0.66	0.87
Net emission (kg CO ₂ eq/yr)	476,623	405,565	454,780

Results

Management strategies: CONVENTIONAL

			mik	R.	3	
	1	2	3	4	5	6
Milk production	9,735	0	-406	O	0	-406
Feed costs (\$)	182,124	-994	-1,795	116	-1,425	-1,349
Total income (\$)	357,151	3,668	-7,979	177	3,865	-7,780
Net return to management (\$)	23,895	7,005	-802	-3,536	3,180	-4,641
Net return to management (\$/1,000 kg milk)	28.9	8.4	0.2	- 4.3	3.8	-4.6
Net emission (kg CO ₂ eq/kg milk)	0.58	-0.16	-0.15	-0.08	-0.18	-0.18
Net emission $(kg CO_2 eq/yr)$	476,623	-126,959	136,289	-60,550	-148,829	-157,555

Results

Management strategies: GRAZING

		MILK	MILK	R.	MILK BL	MILK 8°
	1	6	7	8	9	10
Milk production	7,256	362	725	0	362	725
Feed costs (\$)	134,133	34,797	36,670	242	34,994	36,871
Total income (\$)	288,603	21,560	32,627	95	21,614	32,681
Net return to management (\$)	14,439	-12,846	-4,683	-3,565	-16,407	-8,247
Net return to management (\$/1,000 kg milk)	23.4	-20.9	-9.0	-5.8	-26.4	-14.3
Net emission (kg CO ₂ eq/kg milk)	0.66	-0.17	-0.18	0.04	-0.13	-0.15
Net emission (kg CO ₂ eq/yr)	405,565	-86,729	-81,796	24,506	-65,447	-60,282

Results

Management strategies: ORGANIC

		MILK	MILK	R.	MILE BL	MILK
	1	6	7	8	9	10
Milk production	6,159	308	615	O	308	615
Feed costs (\$)	149,744	49,788	52,369	403	49,861	52,465
Total income (\$)	350,185	39,429	53,253	130	39,526	53,322
Net return to management (\$)	59,120	-9,766	605	-4,855	-14,793	-4,403
Net return to management (\$/1,000 kg milk)	112.9	-23.1	-9.2	-9.2	-32.3	-17.9
Net emission (kg CO ₂ eq/kg milk)	0.87	-0.23	-0.25	0.06	-0.18	-0.20
Net emission (kg CO ₂ eq/yr)	454,780	-102,405	-97,632	30,728	-76,632	-71,615

Conclusions

Sources of GHG emissions

- Opportunities exist to reduce GHG emissions and still maintain or even increase profitability, regardless of the dairy farm system
- Manure management strategies decreased GHG emissions with a negative impact in profitability
- Implementation of mitigation strategies should be applied according to farm system characteristics
- Other important dairy management strategies (e.g., reproduction, culling) cannot be studied directly within the IFSM framework

Acknowledgment

Project Supported by USDA National Institute of Food and Agriculture Organic Agriculture Research and Extension Initiative Grant No. 2010-51300-20534

United States Department of Agriculture National Institute of Food and Agriculture

