
i 

 

Phenotypic and Genome-Enabled Prediction of 

Reproductive Performance in Dairy Cattle Using  

Machine Learning Algorithms 

 

By 

Saleh Shahinfar 

A dissertation submitted in partial fulfillment of 
the requirements for the degree of 

 
Doctor of Philosophy 

(Dairy Science) 
 

at the 
 

UNIVERSITY OF WISCONSIN-MADISON 
2014 

 

Date of final oral examination:  6/6/2014 
 
The dissertation is approved by the following members of the Final Oral Committee 
 

Kent Weigel, Professor, Dairy Science 
Victor Cabrera, Assistant Professor, Dairy Science 
Paul Fricke, Professor, Dairy Science 
Daniel Gianola, Professor, Dairy Science 
David Page, Professor, Department of Biostatistics and Medical Informatics and Department of 
Computer Science 
 

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Saleh Shahinfar 2014 
All Rights Reserved 

 

 

 

 

 



i 

 

 Abstract 

Fast and cost-effective prediction models are increasingly in demand for commercial use. 

Prediction of the outcomes of insemination events as successes or failures based on explanatory 

variables related to genetic predisposition, health history, and lactation performance can have an 

impact on decision-making on dairy farms. However, interactions between management and 

physiological features are very complex. Machine learning algorithms can be useful for 

understanding these complex interactions and developing tools that will help farmers make 

accurate reproductive management decisions. Results of this study showed that random forests 

have the best performance in predicting the outcome of an insemination event and that health 

records of the cow are very important in this prediction. Optimizing classification rate without 

taking into account the cost of classification errors can be misleading. Nevertheless, the cost of not 

breeding a cow that would have conceived is much higher than the cost of breeding a cow that 

would not conceive. The common practice on most commercial dairy farms is to inseminate all 

cows that are eligible for breeding, which is debatable. 

In conjunction with a lift chart analysis, which guides selection of subsets of highly or lowly fertile 

animals with highest and lowest probabilities of conception, the approach described herein could 

successfully stratify the pool of eligible cows in order to use different breeding strategies or use 

semen with different prices in different subsets of eligible cows in order to maximize total 

economic gain, as well as profit per eligible cow. This approach can enhance profitability of the 

dairy farm if sufficient data regarding variables that affect insemination outcomes are available.  

Fuzzy expert systems are distinguished from other black boxed non-parametric methods, such as 

random forests and artificial neural networks, because they are easy to understand and interpret. 

There is lack of research on rule-based methods for genomic selection, because knowledge 

acquisition in such a complex and highly dimensional space is a limiting factor. In this dissertation, 

a hybrid fuzzy expert system, which uses genetic algorithms and particle swarm optimization as 

knowledge acquisition tools from the data was introduced for prediction of daughter pregnancy 

rate in Holstein bulls. 
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A considerable number of articles in the scientific literature on dairy cattle reproduction 

demonstrate that, along with large increases in the milk production of dairy cattle over the past 

five decades, the reproductive performance of dairy cattle has declined significantly (Lucy, 2001). 

Poor reproductive performance in dairy cattle is a complex problem that can be caused by 

physiology, genetics, management, health, and nutritional factors. Due to low heritability, 

improvements in reproductive traits by genetic selection tend to occur very slowly.  Obviously, 

the fastest way to enhance reproduction is through alteration of management practices, which 

requires an understanding of how different environmental and management factors interact with 

each other to influence reproductive performance on commercial dairy farms.  However, genetic 

selection is the only way to confer permanent improvement in a population that will be transmitted 

to future generations. Developing an understanding of the interactions between environmental 

factors, management practices, and genetic predisposition with regard to dairy cow fertility is our 

primary interest, but these interactions are complex and unknown. Therefore using conventional 

statistical methods to unveil these underlying relationships is not feasible. On the other hand, 

machine learning methods can handle complex interactions between variables, accommodate 

missing values for some variables, and account for multicollinearity between variables when 

computing predictions.  

The objectives of this study were: 1) develop an accurate model for predicting the reproductive 

performance of dairy cattle using environmental, genetic, and management variables; 2) 

incorporate economic information regarding the costs and benefits of incorrect and correct 

predictions for the purpose of creating an on-farm decision-making tool that will help farmers 

make optimal breeding decisions, and 3) evaluate a novel fuzzy logic approach for the prediction 
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of genetic merit for male fertility and related traits that might accommodate uncertainty about the 

genetic architecture of these traits.  

The structure of this dissertation is as follows: Chapter 2 provides an in-depth literature review 

about different factors affecting reproductive performance and introduces the concepts associated 

with the analytical methods and algorithms used in the subsequent chapters. Chapter 3 provides an 

application of five alternative machine learning algorithms for predicting the outcome of 

insemination events based on production, reproduction, genetic, and health events.  Chapter 4 

incorporates cost-sensitive evaluation and lift chart analysis using the best-performing algorithm 

from the analysis in Chapter 3, namely a random forest algorithm, to show the economic efficiency 

of different scenarios for inseminating subsets of eligible cows. Chapter 5 describes a novel 

approach for designing a fuzzy expert system to predict the daughter pregnancy rate and related 

traits in dairy cattle using information from single nucleotide polymorphism (SNP) genotypes. 

Chapter 6 is about prediction of retention pay-off using model trees and Chapter 7 provides a 

summary of entire project and offers general conclusions and some recommendation for future 

research.  

Data for this project were from several different sources. Data used in Chapter 3 were from 26 

herds participating in the Alta Genetics (Watertown, WI) Advantage Program. These herds, which 

are spread throughout Wisconsin, are commercially oriented and tend to collect more detailed 

information regarding health events than other commercial dairy farms. Data used in Chapter 4 

were from three different farms located in Wisconsin, in addition to the 26 herds described in 

Chapter 3. Data used in Chapter 5 were from 8,010 genotyped Holstein bulls and were provided 

by the USDA-ARS Animal Improvement Programs Laboratory (Beltsville, MD). Data used in 
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Chapter 6 were from a dynamic programming simulation, as well as real data from University of 

Wisconsin-Madison dairy herd. 

Several different methods and algorithms were used in this research project, and these fall into 

four categories of machine learning algorithms. From the probabilistic learning methods, we used 

naïve Bayes and Bayesian networks. These methods utilize a probabilistic learning algorithm to 

acquire knowledge from the data during the learning process. Decision trees were used from the 

information-based category of learning, in which learning is based on information gain theory. 

From the ensemble group of methods, we used bagging and random forests. Lastly, in Chapter 5, 

genetic algorithms and particle swarm optimization were used in conducting the rule-based 

learning and development of membership functions in a fuzzy expert system. One of the most 

common Bayesian regression methods, known as Bayes B, was used to calculate SNP effects in 

development of the fuzzy expert system. 

WEKA (Version 3.6.4), a data mining software coded in JAVA (Hall et al., 2009), was used to 

implement the machine learning methods used in Chapter 3. Chapter 4 and 6 utilize a customized 

implementation of the random forest and model tree algorithm of WEKA, to be able to predict 

outcomes for unlabeled data, as well as to carry out the cost-sensitive evaluations and lift chart 

analyses. In Chapter 5, the novel fuzzy expert system was developed by the author and 

implemented in the Matlab (Matlab, R2013a, Student version) programming environment. The 

BGLR package (de los Campos and Perez Rodriguez, 2012) version 1.0.2 of the R language was 

used for genetic evaluation of bulls in Chapter 5, and data preparation and genotype imputation 

for the genomic data in Chapter 5 were implemented using Plink version 1.07 (Purcell et al., 2007)  

and Beagle version 3.3.2, (Browning and Yu, 2009) respectively. Data editing and preparation 

were carried out using several custom software programs written in Java after the raw data were 
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extracted from DairyComp 305 backup files and USDA-ARS Animal Improvement Programs 

Laboratory databases.  
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1. Trends in fertility traits 

The decline of reproductive performance in dairy cattle during the past few decades, along with 

great progress in production traits, is evident. Genetic programs with strong emphasis on milk 

production have resulted in cows that are genetically vulnerable to greater degrees of negative 

energy balance (NEB) in early lactation. Basically, NEB occurs because increased milk yield 

requires nearly double the amount of energy provided by dry matter intake (DMI). Therefore, 

additional resources are needed to compensate for the peak in milk production, and these are 

typically provided by enhanced mobilization of adipose tissues and skeletal muscles (Veerkamp, 

1998). 

Washburn et al., (2002) carried out a comprehensive study of herds in the southeastern US and 

showed a significant increase in days open, days to first service, and services per conception in 

Holstein and Jersey cattle from 1976 to 1999. In the same period, milk production and herd size 

increased significantly for both breeds, and there was an increase from 1.9 to 2.9 in service per 

conception (Washburn et al., 2002). 

Significant declines in reproductive performance, measured as an increase in days to first service 

from 84 to 104 during the period from 1983 to 2001, a decrease in annual pregnancy rate from 22 

to 12% during the period from 1978 to 2001, and an increase in calving interval (CI) from 399 to 

429 d during the period from 1970 to 2000 were reported by De Vries and Risco, (2005). In 

Holstein cows, days to first breeding (DFB) declined from 94 d in 1997 to 86 d in 2006. Jersey 

cows did not show a similar trend, possibly because synchronized breeding is not as common on 

farms with Jersey cattle. Additionally, first breeding 70-day non-return rate (NRR70) and first 

breeding conception rate (CR) declined, and the number of breedings per lactation increased. 

These declines were more severe in later parity cows than in young cows (De Vries and Risco, 
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2005). Genetic merit for fertility, as measured by daughter pregnancy rate (DPR), had declined 

since 1960 , but DPR began  to increase in both Holstein and Jersey cattle after the implementation 

of genetic evaluations for length of productive life (PL) in 1994 and DPR in 2003 (Norman et al., 

2009). The use of genetic information for PL in selection programs probably helped to reverse the 

genetic decline in pregnancy rate because of the strong negative relationship between days open 

(DO) and PL. Bulls with high genetic merit for DPR, which has a negative relationship with DO, 

have fewer daughters culled due to reproductive failure and therefore longer PL (Norman et al., 

2009). 

 

2. Associations of fertility with other traits and management factors 

When the decrease in reproductive performance of dairy cattle was discovered, many researchers 

attempted to understand the associations between this trend and modern dairy farming practices, 

with the goal of identifying potential cause-effect relationships between management factors and 

reproductive performance. 

In several studies, the probability of conception was adversely associated with the incidence and 

severity of NEB in early lactation (Butler and Smith, 1989; Nebel and McGilliard, 1993). 

Interestingly, an increase in milk yield during the first 120 d of lactation was associated with an 

increased likelihood of conception, but decreased body condition score (BCS) during the first 

month of lactation was associated with a decreased likelihood of conception. Together, this shows 

that the most important factor is not milk production, but rather energy balance, and this is the 

motivation for using energy corrected milk production in dairy management studies (Domecq et 

al., 1997).  
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In another study, no association was found between milk yield and interval to commencement of 

luteal activity, calving to conception interval, or conception to first service. However, mean daily 

energy balance, milk protein content, and DMI during the first month of lactation were positively 

associated with conception to first insemination. The authors also found that cows with poor BCS 

(≤2.25) at first service had lower conception to first service, whereas cows with higher DMI and 

more positive energy balance had an increased likelihood of a shorter calving to conception 

interval (CCI) (Patton et al., 2007).  Caraviello et al., (2006) surveyed 153 herds and reported that 

AI service rate, conception rate, twinning, retained placenta, and mastitis were the most commonly 

reported factors associated with reproductive management problems in US dairy herds.  

Management practices explain part of the observed downward trend in reproductive performance. 

Some structural changes in dairy operations have been favorable, such as free stalls and automatic 

milking machines (Huang et al., 2009)(Löf et al., 2007). Cows in low-yielding herds had longer 

CI due to longer intervals from calving to first AI and from calving to last AI, as well as greater 

rates of culling due to reproductive problems, as compared with cows in high-producing herds. 

This suggests that high production is not necessarily associated with poor reproduction. However, 

high-producing herds had a greater number of AI services per cow, because heat detection and low 

service rates are among the main causes of poorer reproductive performance low-producing herds  

(Löf et al., 2007). 

Huang et al., (2009) investigated 827,802 AI records from 424,513 first lactation cows born from 

1985 to 2000 in 2353 herds in the southeastern US and found an overall increase in milk production 

and decrease in CR over time. Least-square means analysis of month by milk production 

interactions showed that in cool months (November to April) the deterioration of CR over time 

was small for cows with low or intermediate milk production, and there was virtually no 
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deterioration among high-producing cows. On the other hand, there was significant decline for CR 

in May and June for cows of all production levels. This research suggests that there has been a 

decline over time in the ability of cows to handle the onset of heat stress, or that cows have not 

adapted well to intensive management and high production under conditions of heat stress. 

Heat stress is one of the most important environmental problems that can affect dairy cow 

performance, especially reproduction. Heat stress can cause a significant reduction in CR from 42 

d before to 40 d after insemination, and it has been suggested that fresh transfer of embryos 

collected from donor heifers housed in sheds with a cooling system can enhance conception rate 

in hot months of the year (Jordan, 2003). Heat stress is the most important causal factor in the 

seasonality of DO. Therefore selection for smaller monthly fluctuations in DO within sire families 

may increase heat tolerance of dairy cows (Oseni et al., 2003, 2004a, 2004b).  

Infectious and metabolic diseases are often found to be associated with poor reproductive 

performance. A dramatic decline in CR in cows that had clinical mastitis between 14 and 35 d after 

AI was reported by Hertl et al., (2010) . The greatest effect, which was an 80% reduction in CR, 

was associated with an infection from gram-negative bacteria during the week after insemination. 

Clinical mastitis caused by gram-positive bacteria had a smaller effect on CR, but the reduction 

was still significant. Hudson et al., (2012) also showed that there was a clear unfavorable 

association between clinical and subclinical mastitis and reproductive performance. Giuliodori et 

al., (2013) showed that cows with clinical or puerperal mastitis produced less milk and had lower 

risk for pregnancy by 100 and 150 d postpartum than healthy cows. Furthermore, prepartum NEB 

and calving problems were associated with an increased risk of mastitis (Giuliodori et al., 2013). 

Clinical ketosis, dystocia, and retained placenta are associated with longer days to first service (6 
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to 12 additional days on average) and lower conception rate in subsequente services. (Fourichon 

et al., 2000) (Fourichon et al., 2000).  

Dairy cows pass through a period of negative energy balance during the transition period as the 

demand for production cannot be met by feed intake (Herdt, 2000; McArt et al., 2012). Cows 

adapt to this high energy demand by mobilizing lipid reserves, which circulate in the blood as 

non-esterified fatty acids (NEFA) a cause the liver to produce ketone bodies or triglycerides. 

Excess NEFA, overwhelms the liver, therefore, ketone bodies will be produced and the cow will 

become hyperketonemic (Herdt, 2000).  Cows with hyperketonemia will show weight loss, 

decreased appetites, and therefore decreases in milk production and BCS. Subclinical ketosis 

(SCK) is defined as an increase in ketone bodies in blood without clinical signs of 

hyperketonemia (Andersson, 1988). Cows with SCK are pre-disposed to higher risk of other 

postpartum disease such as displaced abomasum (DA) and metritis (Duffield et al., 2009; Ospina 

et al., 2010) which increase their risk of culling in early lactation. In another study McArt et al., 

(2012) showed that intensive detection followed by treatment of SCK decreased the risk of 

development of DA and culling risk in the first 30 DIM and an increase in conception rate to first 

service in the herd, as well as a decrease in days to first conception. 

Retained placenta was shown to decrease the probability of conception by 25% (Hertl et al., 

2010), and cows with metritis in early lactation suffered from significant delays in time to first 

estrus and significant declines in the probability of success at first insemination (Coleman et al., 

1985; Fourichon et al., 2000; Elkjær et al., 2013). Földi et al., (2006) found that clinical metritis 

affects reproduction in two ways, first by postponing the regeneration of the endometrium, 

therefore disturbing uterine function, and second, by unexpected endocrine signals, therefore 

interfering with normal ovarian function.  
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An investigation of factors influencing the probability of pregnancy by 30 d after the conclusion 

of the voluntary waiting period (VWP) in Sweden revealed that high heat detection efficiency, 

longer VWP (> 51 d), and the presence of free stalls were associated with higher chance of 

pregnancy. On the other hand, the probability of pregnancy was lower for cows with severe foot 

problems. Cows with a history of reproductive-related diseases and other diseases, as well as cows 

with dystocia, twin calving, high milk production, high fat/protein ratio, high somatic cell count 

(SCC), or summer breeding also had decreased chance of pregnancy (Löf et al., 2014). In another 

Swedish study using logistic and Poisson regression, mammary and foot problems  were associated 

with a lower probability of pregnancy and also a greater number of AI services per eligible cow 

(Lomander et al., 2013). High prevalence of lameness has been associated with poor reproductive 

performance, as these herds tend to have longer calving to conception interval and longer overall 

calving interval (Chapinal et al., 2013).  

 

3. Genetic selection for reproductive traits 

In terms of improving fertility through genetic selection, there are several challenges. First, the 

complexity of the trait leads to confusion in determining how to record a cow’s phenotype to 

optimally reflect her fertility. Second, different measures of fertility have been collected in 

different countries, and in some cases these traits have low or negative correlations with one 

another. Inconsistencies between recorded fertility traits among countries is one of the biggest 

challenges in international genetic evaluation of fertility (Philipsson et al., 2007). For example, 

DO and CI can be calculated from milk recording data, and these are probably the most readily 

available fertility traits in dairy cattle. However, interval between first and last insemination (IFL), 

number of inseminations per conception (INS), days to first service (DFS), and time from first 
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insemination to conception are also recorded in many countries with well-established data 

recording programs. A third challenge is the low heritability of fertility traits, which makes their 

improvement through selection slow and inefficient. A final challenge is the need for specialized 

statistical modeling of fertility data (González-Recio and Alenda, 2005).  Linear models are not 

appropriate for binary traits, and data for continuous measures of fertility are often badly skewed 

and frequently censored (Weigel, 2004). 

Fertility of service sire also affects conception rate in the herd (Kuhn et al., 2006). However, zero 

(Kuhn and Hutchison, 2008) or very low (0.01 to 0.04) heritability of male reproductive traits and 

an unfavorable correlation with production traits have limited their usage in selection programs 

(Liu et al., 2008). 

Most selection pressure has focused on improvement of fertility in lactating cows, and heifer CR 

has a  positive correlation of 0.39 with cow CR (Kuhn et al., 2006). This moderate correlation 

between the same measurement in heifers and cows suggests that one should consider traits related 

to fertility in heifers and cows separately (Philipsson et al., 2007). 

Calving interval is often reported to have an unfavorable genetic correlation with milk yield, 

ranging from 0.19 to 0.35,(Kuhn et al., 2006; Wall et al., 2005). However, a high positive 

correlation between CI and  longevity (0.59) may explain the decline in fertility has slowed 

recently, noting that PL has been included in the lifetime net merit index used for selection of US 

dairy cattle since 1994 (VanRaden et al., 2004b). 

Wall et al., (2005) reported an unfavorable genetic correlation between CI and rump angle, udder 

support, and mammary system, as well as a favorable correlation between feet and legs score and 

non-return rate. These findings suggest that more selection emphasis on feet and legs and less 
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emphasis on mammary systems in a selection index might help to improve reproductive traits in 

Holstein dairy cattle indirectly.  

González-Recio and Alenda (2005) and González-Recio et al. (2006) estimated low heritability 

parameters (0.02 to 0.06) for a range of fertility traits. Strong genetic correlations were found 

among most  fertility traits (0.89 to 0.99), and a fertility index composed of DFS and pregnancy 

within 56 d postpartum was shown to achieve the fastest genetic gain, in terms of reducing fertility 

costs, reducing days to first service, and reducing the number of inseminations per lactation by 

$8.60, -1.31 d, -0.03 AI, respectively.  

It is commonly accepted that 21-day pregnancy is the best measurement for assessing the current 

reproductive performance of a dairy herd. Unlike other measurements that are based on outdated 

information, such as CI, or measures that consider only inseminated cows, such as services per 

conception, 21-day pregnancy rate provides a timely and comprehensive evaluation of how quickly 

open cows become pregnant (LeBlanc, 2005).  

With regard to specific genes, polymorphisms in two genes, FGF2 and STAT5A, have been 

associated with estimated relative conception rate, a measure of male  fertility (Khatib et al., 2010). 

These genotypes have been reported to be associated with milk composition traits in previous 

studies, which provides molecular evidence for an genetic relationships between milk production 

and fertility in dairy cattle (Wang et al., 2008; Khatib et al., 2008).  

Using a stringent 5% genome-wide significance level, 22 and 5 SNPs were found to be associated 

with fertilization rate and blastocyst rate of in vitro embryos, respectively (Huang et al., 2010). 

Male fertility, namely sire conception rate (SCR), was reported to be associated with 8 SNPs. Some 

of these significant SNPs were located very close to, or in the middle of, genes with known roles 
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in male fertility, such as sperm acrosome reaction, chromatin remodeling during spermatogenesis, 

or meiotic processes during male germ cell maturation (Peñagaricano et al., 2012). 

By investigating common haplotypes of ≤75 markers that were not observed in homozygous form 

in 58,453 Holstein, 5,288 Jersey, and 1,991 Brown Swiss cows  in North America, VanRaden et 

al. (2011) found that 5 of 11 candidate haplotypes were detrimental to conception rate. The 

corresponding reductions in conception rate ranged from 3.0 to 3.7 percentage points and were 

confirmed using 14,911,387 Holstein, 930,391 Jersey, and 68,443 Brown Swiss conception rate 

records. The estimated effects of carrier status on stillbirth rate were small. The authors concluded 

that these lethal effects may include conception, gestation and stillbirth losses. Three defective 

haplotypes were found in Holstein and named as HH1, HH2, HH3; these had carrier frequencies 

of 2.7 to 6.5% in the current population. In Brown Swiss and Jersey cattle, one defective haplotype 

was found for each breed and named as BH1 and JH1; these had carrier frequencies of 16 and 23% 

in the current population, respectively. The effects of these haplotypes on non-return rate at 60 

DIM were investigated, and reductions ranged from 1.1 to 3.1% for Holsteins and 2.5 –to 3.7% 

for Brown Swiss and Jerseys, respectively (VanRaden et al., 2011).  

 

4. Economics of reproductive traits 

Although reproductive performance has a large impact on dairy farm profitability, there are 

relatively few studies investigating its impact on profit when compared with the number of 

studies on the economics of nutrition or mastitis, as examples. Improvement in reproduction 

cause higher milk production and thereby, higher income over feed cost, lower culling rate and 

breeding cost, and more replacement candidates (Cabrera, 2014).  The objective of reproductive 

efficiency is to maximize the profit per stall per year, by maximizing the proportion of a cow’s 
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lifetime that is spent in the most profitable part of the lactation curve (Ferguson and Galligan, 

2011; Cabrera, 2014) which minimizes the costs associated with replacement and mortality and 

also minimizes the relative costs associated with reproduction (Giordano et al., 2012). 

The economics of reproductive performance are strongly affected by the shape of the lactation 

curve of a dairy cow, and income over feed costs is greatest around the time of peak milk 

production. Insemination rate is often the starting point as an intervention to improve 

reproductive efficiency, because cows cannot get pregnant unless they are inseminated at the 

proper time, but service rate is also extremely important. Most of commercial farms in the 

United States take advantage of a type of synchronization protocol along with oestrous detection 

in their reproduction management  (Caraviello et al., 2006; Giordano et al., 2012; Cabrera, 

2014). The most common measurement for assessing reproductive performance in commercial 

dairy farms is the 21-d pregnancy rate. Although it does not give any insight into economic 

efficiency of reproduction programs (Cabrera, 2014). Because of the complex nature of 

reproduction management and its relationship with replacement rate, production, and 

profitability of the farm, understanding its economic impact, is difficult in reality. A few 

simulation studies have tried to address this need by providing some decision support tools to 

help farmers compare economic returns of different scenarios of reproduction programs 

(Giordano et al., 2011, 2012; Galvao et al., 2013). Cabrera (2012) introduced the concept of 

economic value of a cow, which is very similar to the concept of retention pay off introduced by 

De Veries (2006) that can be used to optimize the reproduction performance of the farm at the 

cow level, which is the focus of this dissertation. 

A major determinant of the economic value of a pregnancy is expected future milk production of 

the cow relative to its herd mates. This, in turn, is a function of cow’s current production, age, 
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probability of culling, probability of pregnancy in next cycle (if non-pregnancy), and breeding 

policy of the herd.  

In general, the economic value of reproductive performance can be considered as a function of two 

opportunity costs:  

1) The forgone profit associated with a cow that remains open beyond the optimal DO 

(approximately 120 DIM in a typical herd) and therefore spends a greater proportion of 

time in the late, low-production part of lactation. 

2) Failure to realize all of the lifetime profit a cow is genetically predisposed to provide, 

because her inability to become pregnant leads to premature culling from the herd.  

The opportunity costs of prolonged days open and involuntary culling are typically greater than 

the direct costs of increased labor and additional AI semen. The opportunity cost of an additional 

day open, as well as the value of pregnancy at a certain interval after calving, depend substantially 

on milk yield, lactation persistency, milk price, the availability and cost of replacement heifers, 

and herd’s pregnancy rate (LeBlanc, 2007). Parity, age, stage of lactation, carcass value, herd 

breeding policy, and discount rate also influence the economics of reproduction  (De Vries, 2006), 

and the cost of an additional day open has been estimated from $0.44 at 130 DIM to $4.70 at 150 

DIM (LeBlanc, 2007). 

González-Recio et al., (2004) showed that the number of inseminations per cow has a major impact 

on dairy farm profitability. When the average number of inseminations increases beyond 3.0, herd 

profit decreases by more than $205/cow/year. Cows that require more inseminations per pregnancy 

tend to have higher milk production but also higher culling risk, which leads to shorter productive 
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life, less lifetime production, and lower profit. Economic values for calving interval and number 

of times bred were estimated as $-4.90 and $-67.32/cow/year per unit of change, respectively. 

The cost per AI event on farms using the Ovsynch protocol was estimated to be $20.50/cow, and 

this number can increase to $24.20 on small farms, in addition to semen and heat detection costs, 

whereas the cost per AI event on farms using the Cosynch protocol was estimated to be $21.00 on 

small farms (Olynk and Wolf, 2009).In another study, Lima et al. (2010) estimated a per timed AI 

event of $22.07 when the semen cost was assumed to be $6.00 per unit. 

In a simulation study, the average value of a new pregnancy was estimated to be $278, and the 

average cost of pregnancy loss due to abortion was estimated to be $555 for Holstein cows under 

typical US dairy farming conditions (De Vries, 2006). 

 

5. Overview of Machine Learning methods used in this research 

There is no systematic approach that one can use, a priori, to find the most suitable machine 

learning method for a particular task. Therefore, a common approach in machine learning studies 

is to test multiple leading algorithms on a new application.  In this study, the leading algorithms 

for learning Bayesian networks and decision trees, including bagging and random forest algorithms 

that learn ensembles (groups) of trees were tested.  The algorithms tested herein are among the 

most widely used in the field of machine learning today. In order to classify insemination events 

into pregnant or non-pregnant outcomes based on a set of explanatory variables, five types of 

machine learning algorithms were used: naïve Bayes, Bayesian networks, decision trees, bagging 

(ensemble of decision trees), and random forests. A brief explanation of each technique follows: 
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5.1 Naïve Bayes (NB): Naïve Bayes is one of the most efficient and effective inductive learning 

algorithms for machine learning and data mining. It is a statistical classifier based on Bayes rule 

(Domingos and Pazzani, 1997), and it is the simplest form of Bayesian network, in which all 

features are independent given the value of the outcome; simplicity, computational feasibility, and 

robustness make this method suitable for practical use. NB can tolerate dependencies between 

features very well and can often outperform more elaborate methods, such as rule-learners and 

decision tree learners (Clark and Niblett, 1989; Cestnik, 1990). In addition, NB are quite intuitive 

and easy to understand, which is a big concern in the machine learning field (Kononenko, 1990). 

However, linear dependencies between features can reduce the power of NB, and careful selection 

among highly dependent features can be beneficial. Another concern about NB is that the 

assumption of normality for numeric features is not always true, and using kernel density 

estimation has been shown to confer improvement in this case (Witten and Frank, 2005). Suppose 

F is a vector of features (f1, f2 …fn), and c is a class variable with two values (O = Open, P = 

Pregnant). The probability of the class variable given the feature vector can be calculated as: 

ܥሺ݌ ൌ ܿ|݂1, ݂2,… . ݂݊ሻ ൌ
,݂2			ሺ݂1,݌ … , ܥ|݂݊ ൌ ܿሻ݌ሺܥ ൌ ܿሻ

,ሺ݂1݌ ݂2,…݂݊ሻ
 

Because we assume that all features are independent given the class variable (conditional 

independence): 

,ሺ݂1݌ ݂2,… . , ܥ|݂݊ ൌ ܿሻ ൌ ܥ|ሺ݂1݌ ൌ ܿሻ݌ሺ݂2|ܥ ൌ ܿሻ……݌ሺ݂݊|ܥ ൌ ܿሻ 

,ሺ݂1݌ ݂2,…݂݊ሻ ൌ  ሺ݂݊ሻ݌…ሺ݂2ሻ݌ሺ݂1ሻ݌	

can be calculated easily from the training data, as well as the prior probability for a given class, 

ܥሺ݌ ൌ ܿሻ. 
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5.2 Bayesian Network (BN): A Bayesian network represents the joint probability distribution of a 

set of variables{X1, X2,…. Xn} as a discrete acyclic graph and a set of conditional probability 

distributions that correspond to specific features. The joint probability distribution can be 

calculated as )|()( )(iPa
i

ii XXPXP  	, where )(iPaX  denotes a set of parent variables for node i 

(Kjaerulff and Madsen, 2007). A small set of parent variables is preferred, because the network 

requires a parameter space that is exponential in the number of parents of each node  (Lowed and 

Domingos, 2005) 

When the structure of the network is known, learning reduces to estimating conditional probability 

distribution parameters; otherwise the structure can be found by using a greedy hill-climbing 

search, starting from an empty network. Missing values can be estimated using an expectation 

maximization or maximum a posteriori probability algorithm (Jensen, 2001). Unlike NB, BN have 

no strong independence assumption between features. BN are especially useful, because by using 

Bayes theorem it is easy to compute the probability distribution of children given the values of 

their parents, as well as the probability distribution of parents given the values of their children. 

That is, BN can proceed not only from causes to consequence, but also from consequence to causes 

(Uusitalo, 2007). BN are well suited for small and incomplete data and can achieve good prediction 

accuracy in such situations  (Kontkanen et al., 1997). Structural learning is possible with BN, and 

combining different sources of knowledge is a powerful property of BN, because prior knowledge 

can come from many different sources with different distributions. An additional advantage of BN 

is that, once the structure and parameters are known, any query can be done very quickly. 

Nevertheless, there are a fewer challenges with using BN in practice, including discretizing of 

continuous variables, collecting and structuring expert knowledge, and implementing recursive 

feedback loops (Uusitalo, 2007).  
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5.3 Decision tree (DT): Decision trees are among the simplest, most intuitive, easily interpretable, 

and widely used machine learning algorithms. They are tree-shaped models with tests carried out 

on feature values in the internal nodes and class labels in the leaves. New instances are classified 

by passing through the nodes and corresponding tests within the tree, and the label of the final leaf 

reached by each instance is the predicted class for that example. The C4.5 algorithm (Quinlan, 

1993) is a well-known algorithm for constructing decision trees. This algorithm builds the tree by 

a divide and conquer approach, choosing the most informative feature in each iteration using a 

heuristic function called the gain ratio (described in a subsequent section of this chapter). Features 

that correspond to the largest information gain ratios will be chosen by the algorithm in earlier 

iterations (at higher levels of the tree) to divide the instances. This process repeats recursively to 

construct the sub-trees (lower levels of the tree). The C4.5 algorithm will create a leaf and stop 

building the sub-tree if all of the remaining instances in the training set belong to the same class, 

or if the number of  instances remaining is fewer than the minimum defined in the algorithm. 

Eventually, after building a tree to the maximum size, the C4.5 algorithm will prune the tree 

backwards in order to reduce classification error due to over-fitting. DT are divide and conquer 

methods, and they are very useful for approximating discrete-valued functions. They are robust to 

noisy data and are capable of learning the disjunctives of conjunctions. Despite their simplicity 

and ease of understanding, there are some challenges in learning a DT, including determining the 

optimum depth of the tree, choosing an appropriate attribute selection method, and handling data 

with missing features (Mitchell, 1997) .  

5.4 Bootstrap Aggregation (BG): Bootstrap aggregation, which is also known as bagging (BG) is 

an ensemble method in which multiple versions of a predictor will be generated to drive an 

aggregated predictor. For predicting numeric values, aggregating would be a simple average over 
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all models, whereas for classification purposes it would be the majority vote of classes (Breiman, 

1996). Essentially, bagging improves prediction performance by building several models and 

letting them vote. Bagging can be used with any type of classifier, and it is easy to implement and 

computationally feasible. However, the black box nature of a bagged model makes it difficult to 

understand and interpret explicitly. Bagging uses the instability of a model to improve 

predictability. Therefore, bagging of stable models, like NB, will not improve predictive 

performance, but bagging of unstable methods, such as tree learners, will improve the 

predictability of the ensemble model (Brieman, 1994). In BG, using a training set with n features 

and M instances, the algorithm will create m new training sets by taking bootstrap samples from 

the original data set. Then, using any machine learning technique, m models will be trained using 

the m bootstrap samples, and the final value will be generated by averaging the model predictions 

or voting for the majority class. In this paper, a tree learner category of classifiers that relies on a 

reduced–error pruning approach, commonly known as RepTree, was used (Witten, and Frank, 

2005).  

5.5 Random forest (RF): Random forest is another ensemble method, in which training many 

classifiers using m bootstrap samples from the training set is combined with random selection of 

a subset of features for generating each of those classifiers (Breiman, 2001; Ho, 1995). Thus, a RF 

algorithm is very similar to BG, except that in each iteration of building a tree, RF picks a random 

subset of features and divides the instances based on the most informative feature. Because the 

task is limited to a small subset of features and instances, RF is a computationally efficient 

technique that can be used with highly dimensional data sets. One of the biggest advantages of RF, 

and the main reason it was chosen in this study, is that, RF is very efficient for estimating missing 
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values and can maintain high accuracy when a large proportion of the data are missing, this is a 

common situation when analyzing producer-reported health data of dairy cattle.   

 5.6 Model tree (MT): They are similar to decision trees because they use a divide and conquer 

approach to partition the multi-dimensional state space of the problem (Quinlan, 1992). The model 

tree (MT) predicts the values for test instances by the linear model (LM) stored in each leaf based 

on the attributes of instances that reach that specific leaf. The MT and alternating decision trees 

have been used in assessment of reproductive performance of dairy herds (Caraviello et al., 2006; 

Schefers et al., 2009).  

5.7 Artificial life: This set of methods uses informational concepts and computer modeling to 

study life in general (Keil and Wilson, 1999). A-life has been used to describe man-made systems 

that mimic some essential aspects of living organisms.  It has two main streams: how 

computational techniques can help us understand life and how biological phenomena can help us 

overcome computational problems (http://www.alife.org). In this dissertation we use three 

techniques: genetic algorithm, particle swarm optimization, and fuzzy logic from the second main 

stream.  

5.8 Genetic algorithm (GA): Fitness landscape, introduced by (Wright, 1932), was an important 

starting point in the development of the genetic algorithm (GA). In the 1950’s statisticians such as 

Box (1957) and Friedman (1959) used evolutionary algorithms for optimization purposes. This 

didn’t gain much attention until evolution strategies were used to solve optimization problems for 

airfoils by  Rechenberg (1965). In the 1970’s,  Holland (1975, 1995) championed the GA both as 

an optimization tool and as a method to expand our understanding of biological adaptation. The 

Alife movement (Langton, 1995) developed this idea to the next level by considering the product 

of a genetic algorithm as an organism, not only a solution to an optimization problem.  
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Genetic algorithm is a stochastic hill-climbing search in which a large population of states are 

maintained. New states (population) are generated by selection, crossing over, and mutation. 

It is a variant of stochastic beam search in which, instead of modifying a single state, a successor 

state is generated by combining two parent states through genetic operations. GA is analogoues  to 

natural selection as stochastic beam search, except that it deals with sexual rather than asexual 

reproduction. Similar to beam searches, GA initiates the solution space with a set of k randomly 

generated solutions, called the population. Each state is called an individual and is represented as 

a string of 0’s and 1’s to represent a solution.  

The next generation of states will be produced by selection after a fitness value has been 

determined by the fitness function. The probability in which each current individual will be 

selected to produce the next generation of solutions is proportional to the fitness value of each 

individual. After the parents of the next generation are selected, in order to generate the next 

generation of states, each pair of individuals will be mated, a crossing over point will be chosen 

on the string heuristically, and individuals of the next generation will be generated. Conceptually, 

when the two parent states are quite different, the crossover operation can produce a state (child) 

that is far away from each parent. It is often the case when the population is very heterogeneous in 

early iterations, so crossovers frequently take large steps in state space and explore the entire space 

for the optimum solutions. However, as the algorithm continues and diversity decreases in the 

population, crossovers will take smaller steps and exploit the solution space for the optimality. 

Finally, in each iteration after crossing-over, each location is exposed to random mutation with a 

small probability to prevent rapid convergence and local optima.  

Similar to stochastic beam search, a GA utilizes hill climbing with random exploration and 

exchange of information between parallel intermediate solutions. The primary advantage of GA 
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comes from the crossover operation, which combines the suboptimal solution together to create 

higher individual fitness in the next generation of state space (Russell, and Norvig, 2002).  

  

5.9 Particle swarm optimization (PSO):  This is a social-biological system inspired by the social 

behavior of a swarm of birds or fish when looking for food or escaping from predators. It is a 

technique used to explore the search space of the problem in order to find the optimum solution. 

This technique was originated based on social habits of bird swarm and evolutionary computing 

(Kennedy and Eberhart, 1995).  

Suppose a group of bids are searching randomly for food in an area where there is only one piece 

of food. Birds do not know where the food is, but in each iteration they will know how far they are 

from the food and also which one of them is the closest to the food. So, the best strategy here 

would be to follow the bird that is closest to the food. Here, each bird is a single solution in the 

state space and is called a particle. Each particle has a fitness value associated with it in each 

iteration. Also, each particle has the memory of its own fitness so far, as well as the knowledge of 

the best fitted bird in the swarm. The first one is the best position that the particle has achieved so 

far and is called particle best. The second one is the best position obtained by any particle so far 

in all iterations and is called global best (http:\\swarm intelligence.org). 

In particle swarm optimization (PSO), initial solutions generate randomly throughout the 

algorithm. In each iteration particles pass through three stages as follow: 

1- Evaluate fitness 

2- Update particle best and global best fitness and positions 

3-  Velocity and position updating of each particle 

However, the last step is not trivial. Particle’s velocity is updated as follows: 
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௧ାଵݒ
௜ ൌ ௧ݒݓ

௜ ൅ ܿଵݎଵൣݔො௧
௜ െ	ݔ௧

௜൧ ൅ ܿଶݎଶൣ݃௧ െ ௧ݔ
௜൧ 

where	ݒ௧ାଵ
௜ 		is	the	velocity	of	particle	i	in	the	iteration	t൅1,	ݒ௧௜	is	the	velocity	if	particle	i	in	

iteration	t.	ݓ, ܿଵ, and	ܿଶ are user specified coefficients between 0 and 2 which are also subject to 

fine tuning of the algorithm. ݎଵ	and	ݎଶ are random numbers between 0 and 1 that are regenerated 

in each iteration to add stochasticity to the process. The ݔො௧
௜ is the particle best solution up to 

iteration t and	݃௧ is the global (swarm) best solution so far.  

Each of the three terms in the equation above has a different role in the convergence of the 

algorithm.  The first term, ݒݓ௧
௜	, is called the inertia component and keeps the particle movement 

in the initial direction. If the value of the inertial coefficient w is less than 1 it can suppress the 

particle’s inertia, or it can increase the speed of particle in the original direction if it is between 1 

and 2 (Shi and Eberhart, 1998).  

Basically, smaller values of the inertial coefficient increase the convergence speed of the swarm, 

and bigger inertial coefficients encourage exploration of the entire search space. The second 

term	ܿଵݎଵൣݔො௧
௜ െ	ݔ௧

௜൧, called the cognitive component, is essentially the particle’s memory, forcing 

the particle to return to the regions of the search space in which it has experienced high individual 

fitness. In other words, it forces the particle to search locally and explore the neighborhood. The 

cognitive coefficient, c, is usually close to 2 and the size of the step of the particle toward its 

individual best candidate solution		ݔො௜ is affected by it.  

The third term, ܿଶݎଶൣ݃௧ െ ௧ݔ
௜൧, called the social component, leads the particle to the best region that 

the swarm has found so far. The social coefficient c2 is usually close to 2 and indicates the size of 

the step the particle takes toward the global best, ݃௧,. In other words, this term is responsible for 

the exploitation of the whole search space. 
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In order to bound the particles to move too far beyond the search space a technique called velocity 

clamping can be used to limit the maximum velocity of each particle. For a search space in the 

range ሾݔ௠௜௡	, ,	௠௜௡ݒ௠௔௫ሿ, velocity clamping keeps the velocity in the range ሾݔ  where	௠௔௫ሿ,ݒ

	ݔܽ݉ݒ ൌ 	݇ ∗  .௠௔௫, and k is a user specified coefficient between 0 and 1ݔ

After the velocity for each particle is calculated and checked to be within the acceptable 

boundaries, each particle’s position will be calculated and updated by the equation below: 

௧ାଵݔ
௜ ൌ ௧ݔ

௜ ൅	ݒ௧ାଵ
௜  

 

This process is repeated as long as a stopping condition is not satisfied or the maximum iteration 

number is reached (Blondin, 2009).  

 

5.10 Fuzzy Logic (FL): Fuzzy logic is a type of multi-valued logic, dealing with reasoning that is 

uncertain rather than fixed and precise. Against traditional binary sets, which variables take either 

true or false values, in fuzzy logic variables are associated with a truth value that ranges between 

0 and 1. Fuzzy logic has been developed to handle the concept of partial truth, in which the truth 

value may fall between completely true and completely false (Novák et al., 1999).  

It is an approach to reasoning based on "degrees of truth" rather than absolute "true or false" (1 or 

0) in Boolean logic on which the modern computers work. Fuzzy logic was first introduced by Dr. 

Lotfi Zadeh of the University of California at Berkeley (Zadeh, 1965). The idea emerged when he 

was working on the problem of computer understanding of natural language. Like most other 

activities in life, natural language cannot be easily translated into the crisp terms of 0 or 1. In fuzzy 

logic 0 and 1 would be considered as extreme cases of truth, and it also includes the various states 

of truth in between. For instance, the result of a comparison between the height of two persons 
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would be 0.38 of tallness rather than crisp "tall" or "short". Fuzzy logic seems closer to the state 

of nature and the way our brains inference. Data will be aggregated, and a number of partial truths 

will be formed, which could be aggregated further into higher truths. It may be easier to visualize 

fuzzy logic as the way reasoning really works and the fact that binary or Boolean logic is simply 

a special case of it (Rouse, 2006) 

5.10.1 Fuzziness vs probability: Fuzziness describes the ambiguity of an event. What it measure 

is the degree to which an event happens, not whether it happens or not. On the other hand, 

randomness describes the uncertainty of an event’s occurrence. Randomness describes how 

frequently an event occurs or not and how you can bet on it. In another words, “whether an event 

occurs is “random” and the  degree it occurs is “fuzzy””(Kosko, 1990).  

5.10.2 Fuzzy expert systems: A fuzzy expert system is simply an expert system which uses a set 

of if-then rules and respective membership functions to reason about data. The general form of a 

rule in a fuzzy expert system is as follow: 

ܴ௜: .	݀݊ܽ	௜ଵܣ	ݏ݅	௤ଵݔ	݂݅ … .  ௜ܥ	ݏ݅	ݏݏ݈ܽܿ	݄݊݁ݐ	௜௡ܣ	ݏ݅	௤௡ݔ	݀݊ܽ

where ܣ௜ଵ ௤ଵݔ	 ௜௡ are antecedent fuzzy sets of the inputsܣ…… … . .  ௜ is the output classܥ ௤௡ andݔ

label. A set of such rules forms the rule base for the fuzzy expert system in which qualitative 

reasoning to infer the results is performed. Fuzzy if-then rules along with membership functions 

form the core part of a fuzzy inference system. 

Fuzzy inference is the process of the mapping from a set of given input to an output using fuzzy 

logic. This mapping then provides a basis which can be used in decisions making or pattern 

recognition. Different types of fuzzy reasoning have been developed. Depending on the types of 
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fuzzy reasoning and knowledge base (fuzzy if-then rules) used, most fuzzy inference systems (FIS) 

would be classified into two types: 

Mamdani: This was among the first control systems built using fuzzy set theory. It was formed as 

an attempt to control a steam engine and boiler combination by synthesizing a set of linguistic 

control rules obtained from experienced human operators (Mamdani, 1977). The overall fuzzy 

output is obtained by applying “max” operation to the fuzzy outputs (each of which is derived by 

applying “min” operation to the firing strength and the output membership function of each rule). 

Different methods have been proposed to calculate the final crisp output based on the overall fuzzy 

output. These could be centroid of area, bisector of area, mean of maxima, and maximum criterion, 

to name a few. 

Takagi-Sugeno: In Takagi and Sugeno’s fuzzy if-then rules (Takagi and Sugeno, 1983) a linear 

combination of input variables plus a constant term. The final output of the system would be the 

weighted average of all rule’s output. Most of the  differences come from the specification of the 

consequent part (monotonically non-decreasing or bell-shaped membership functions, or crisp 

function) and also the de-fuzzification (weighted average, centroid of area, etc.) schemes (Jang, 

1993). 

FISs are also known as fuzzy-rule-based systems as well. Generally an FIS is contain of five 

functional parts:  

1) A knowledge base. 

       - A rule base that contains a set of fuzzy if-then rules;  

      -  A database which defines the membership functions of the fuzzy sets used in the fuzzy rules. 
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2) A fuzzification interface scheme which transforms the crisp inputs into degrees of 

belongingness to the linguistic variables.  

3) A decision-making engine which performs the inference operations on the rules. 

- Combines the membership values on the antecedent part of the rule to get the firing strength 

(weight) of each rule. 

- Generates the qualified consequent which can be either fuzzy or crisp for each rule based 

on the firing strength. 

4)  A de-fuzzification interface which transforms the fuzzy results of the inference into a crisp 

output by aggregating the qualified consequents. 

Mamdani and Sugeno fuzzy inference systems (Jang, 1993; Pal, 1999) were used in this research 

and their performances were compared against each other’s as well as genomic best linear unbiased 

prediction (GBLUP), RF, ordinary least squares (OLS), and support vector machines (SVM).  

In the model developed herein, a set of input SNPs were compared against the antecedent part of 

each if-then rule, and in the case of a match the response (output) was obtained by fuzzy 

implication operation. The extent to which each rule is fired indicates the weight of that rule. Next, 

the response of fired rules for a particular input are combined to obtain the final class prediction 

of that input set. 

In the development of a fuzzy inference system knowledge acquisition is the most critical part. It 

can be done practically by using an expert’s knowledge through a questionnaire or interview and/or 

by the means of data mining tools applied to existing databases. In the current study, because of 

the large number of SNPs, there would be an infinite number of possible rules and therefore no 

expert exists to define a complete rule set as well as an optimum membership function for each 

SNP that is included in antecedent of the rules.  
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One or more machine learning method can be used to tackle this problem. The hybrid proposed 

fuzzy system uses genetic algorithms to come up with an optimum set of if-then rules and particle 

swarm optimization algorithm to tune membership function points.  
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1. ABSTRACT 

 When making the decision about whether or not to breed a given cow, knowledge about the 

expected outcome would have an economic impact on profitability of the breeding program and 

net income of the farm. The outcome of each breeding can be affected by many management and 

physiological features that vary between farms and interact with each other. Hence, the ability of 

machine learning algorithms to accommodate complex relationships in the data and missing values 

for explanatory variables makes these algorithms well suited for investigation of reproduction 

performance in dairy cattle. The objective of this study was to develop a user friendly and intuitive 

on-farm tool to help farmers make reproduction management decisions. Several different machine 

learning algorithms were applied to predict the insemination outcomes of individual cows based 

on phenotypic and genotypic data. Data from 26 dairy farms in the Alta Genetics (Watertown, WI) 

Advantage Progeny Testing Program were used, representing a ten-year period from 2000 to 2010. 

Health, reproduction and production data were extracted from on-farm dairy management 

software, and estimated breeding values were downloaded from the USDA ARS Animal 

Improvement Programs Laboratory (Beltsville, MD) database. The edited data set consisted of 

129,245 breeding records from primiparous Holstein cows and 195,128 breeding records from 

multiparous Holstein cows. Each data point in the final data set included 23(25) explanatory 

variables and one binary outcome for primiparous (multiparous) cows, respectively. The best 

performance was exhibited by a random forest algorithm with 0.723±0.21 (0.736±0.28) 

classification accuracy and area under the curve of 0.756±0.005 (0.736±0.005) for primiparous 

(multiparous) cows, respectively. The naïve Bayes algorithm, Bayesian network and decision tree 

algorithms showed somewhat poorer classification performance. An information-based variable 

selection procedure identified herd average conception rate, incidence of ketosis, number of 
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previous (failed) inseminations, days in milk at breeding, and mastitis as the most effective 

explanatory variables in predicting pregnancy outcome. 

Key words. machine learning, reproductive management, dairy cattle. 

 

2. INRODUCTION 

 

Although it is often stated that the decline in reproductive performance of dairy cattle is due to 

intensive selection for high milk production, it is clear that many environmental features and 

management practices contribute directly to the insemination outcome. Management features, such 

as heat detection, nutrition, transition cow management, body condition score, semen handling, 

metabolic disorders, udder health, calving difficulty, reproductive disease, and cow comfort 

strongly affect reproductive performance (Lucy, 2001; Caraviello et al., 2006; Schefers et al.).  

Researchers have also reported associations between reproduction traits and genetics (Weigel, 

2004; González-Recio and Alenda, 2005; Liu et al., 2008),  milk yield (Berry et al., 2003; Windig 

et al., 2005, 2006; Tiezzi et al., 2011), heat stress (Morton et al., 2007),  energy balance (de Vries 

and Veerkamp, 2000), timing of AI (Cornwell et al., 2006),  reproductive health (Sheldon et al., 

2002) ,  lameness (Garbarino et al., 2004), quality and quantity of semen (Jaskowski, J. M., and J. 

Szenfeld, 1999), sperm dosage in sex-sorted semen (DeJarnette et al., 2011), rump angle and 

conformation traits (Wall et al., 2005), and cow health (Chebel et al., 2004). Caraviello et al. (2006) 

used an alternating decision tree algorithm to identify frequency of hoof trimming, type of bedding 

in the dry cow pen, type of restraint system, and duration of the voluntary waiting period as key 

features in predicting first-service conception rate. They also found that bunk space per cow, 

temperature for thawing semen, percentage of cows with low body condition scores, number of 
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cows in the maternity pen, strategy for using cleanup bulls, and milk yield at first service were the 

most informative variables in predicting the insemination outcome at 150 days in milk (DIM). 

Schefers et al., (2010) modeled conception rate and service rate of commercial dairy herds using 

a model tree algorithm. Their study identified percentage of repeated inseminations between 4 and 

17 days post-AI (a measure of  breeding protocol compliance), stocking density in the breeding 

pen, length of the voluntary waiting period, days from insemination to pregnancy check, and 

somatic cell score as the most important features in predicting herd average conception rate. The 

most important explanatory variables for predicting herd average service rate were: number of 

cows per breeding technician, resynchronization protocol, use of soakers in the holding area, and 

bunk space per cow in the breeding pens. The effects of negative energy balance in early lactation 

have been well studied and seem to be partially responsible for lower conception rates observed in 

high producing cows. Oikonomou et al., (2008) showed that body condition score, energy content 

of the diet, cumulative effective energy balance, and blood glucose have favorable genetic 

relationships with reproduction, whereas B-hydroxybutyrate and non-esterified fatty acids are 

negatively correlated with energy balance and have unfavorable genetic correlations with 

reproductive traits. In that study, mean daily energy balance, milk protein content, and dry matter 

intake during the first 28 days postpartum were associated with higher conception rate at first 

service, whereas cows with high dry matter intake and positive energy balance had a shorter 

calving to conception interval. On the other hand, lower body condition scores have been 

associated with a longer calving to conception interval (Patton et al., 2007). 

Although several studies have attempted to identify specific factors affecting insemination 

outcome in lactating dairy cattle, few have tried to predict the outcome of individual insemination 

events based on all health, reproduction, and production data available for each cow at the time of 
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service. Obviously, such a prediction tool could be useful as a decision support system for dairy 

farmers. 

The ability to accommodate large and complex data sets with missing values, as well as the lack 

of restrictive parametric assumptions, make machine learning methods good candidates for data 

mining and development of predictive tools in fields such as agriculture.  Grzesiak et al., (2010) 

used artificial neural networks, multivariate adaptive regression splines, logistic regression, 

classification trees, and classification functions to classify cows with good or poor reproductive 

performance based on age, calving interval, gestation length, body condition score, fat corrected 

milk, and average of fat and protein percentages. They reported classification accuracies of 85 to 

86%, with sensitivity and specifity of 85%, for a multilayer perceptron with 2 hidden layers. 

Among the machine learning methods used in the animal sciences, artificial neural networks are 

the most frequently used, with applications such as: predicting milk yield in dairy cows (Lacroix, 

R. et al., 1995; Grzesiak et al., 2006; Gianola et al., 2011), classifying mastitis cases (Yang, X. Z. 

et al., 1999), classifying lameness in horses (Suchorski-Tremblay, A. M. et al., 2001), predicting 

slaughter weight of bull calves (Adamczyk et al., 2005), identifying SNPs associated with chicken 

mortality (Long et al., 2009), and real-time prediction of breeding values in dairy cattle (Shahinfar 

et al., 2012). 

The objective of this study was to compare the performance of different machine learning 

algorithms for predicting the insemination outcomes of lactating dairy cows using production, 

reproduction, health, and genetic information. Identification of specific environmental factors or 

management practices that affect reproductive performance is a by-product of the aforementioned 

analyses, but in this study our primary goal was to maximize predictive ability for development of 

a decision support tool. 
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3. MATERIALS AND METHODS 

3.1 Data 

The data utilized in this study were provided by 26 Wisconsin dairy farms that were enrolled in 

the Alta Genetics (Watertown, WI) Advantage Progeny Testing Program. A general description of 

these dairy herds can found in Table 1 of Schefers et al. (2010).  After editing, the data set 

contained 129,245 breeding records from primiparous Holstein cows and 195,128 breeding records 

from multiparous Holstein cows. For each breeding event, there existed corresponding production 

data, estimated breeding values, health events, and reproduction information (Table 3.1). In term 

of reproduction performance herds in this study are representative of large commercial dairy farms 

in Wisconsin (Figure 3.1). 

Production, reproduction, and health event data were obtained from backup files of the on-farm 

DairyComp 305 herd management software (Valley Ag Software, Tulare, CA) of individual farms. 

Estimated breeding values and calving ease data were extracted from the USDA-ARS Animal 

Improvement Programs Laboratory (Beltsville, MD) database. Each data point in the final data set 

included 23 or 25 features and one binary response variable for primiparous or multiparous cows, 

respectively. Records were collected over a 10 year period from 2000 to 2010.  

In order to account for energy balance and reduce the dimensionality of features in the model for 

analysis, energy corrected milk (ECM) was used as an explanatory variable. The following 

equation was used to determine the amount of energy needed for producing milk, adjusted to 

3.5% fat and 3.2% true protein (Tyrell and Reid, 1965): 

ECM = (0.327 * Milk kg) + (12.95 * Fat kg) + (7.65 * Protein kg). 
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3.2 Machine Learning Algorithms 

There is no systematic approach that one can use, a priori, to find the most suitable machine 

learning method for a particular task. Therefore, a common approach in machine learning studies 

is to test multiple leading algorithms on a new application.  In this study, the leading algorithms 

for learning Bayesian networks and decision trees, including bagging and random forest algorithms 

that learn ensembles (groups) of trees were tested.  The algorithms tested herein are among the 

most widely used in machine learning today. In order to classify insemination events into pregnant 

or non-pregnant outcomes based on the aforementioned explanatory variables, five types of 

machine learning algorithms were used: naïve Bayes, Bayesian networks, decision trees, bagging 

(ensemble of decision trees), and random forests. A brief explanation of each technique follows: 

3.2.1 Naïve Bayes (NB). Naïve Bayes is one of the most efficient and effective inductive 

learning algorithms for machine learning and data mining. It is a statistical classifier based on 

Bayes rule (Domingos  and Pazzani, 1997), and it is the simplest form of Bayesian network, in 

which all features are independent given the value of the outcome (Figure 3.2a); simplicity, 

computational feasibility, and robustness make this method suitable for practical use. NB can 

tolerate dependencies between features very well and can often outperform more elaborate 

methods, such as rule-learners and decision tree learners (Clark and Niblett 1989; Cestnik, 1990). 

In addition, NB are quite intuitive and easy to understand, which is a big concern in the  machine 

learning field (Kononenko, 1990). However, linear dependencies between features can reduce the 

power of NB, and careful selection among highly dependent features can be beneficial. Another 

concern about NB is that the assumption of normality for numeric features is not always true, and 

using kernel density estimation has been shown to confer improvement in this case ( Witten and 

Frank, 2005). Suppose F is a vector of features (f1, f2 …fn), and c is a class variable with two 
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values (O = Open, P = Pregnant). The probability of the class variable given the feature vector can 

be calculated as: 

ܥሺ݌ ൌ ܿ|݂1, ݂2,… . ݂݊ሻ ൌ
,݂2			ሺ݂1,݌ … , ܥ|݂݊ ൌ ܿሻ݌ሺܥ ൌ ܿሻ

,ሺ݂1݌ ݂2,…݂݊ሻ
 

Because we assume that all features are independent given the class variable (conditional 

independence): 

,ሺ݂1݌ ݂2,… . , ܥ|݂݊ ൌ ܿሻ ൌ ܥ|ሺ݂1݌ ൌ ܿሻ݌ሺ݂2|ܥ ൌ ܿሻ……݌ሺ݂݊|ܥ ൌ ܿሻ 

,ሺ݂1݌ ݂2,…݂݊ሻ ൌ  ሺ݂݊ሻ݌…ሺ݂2ሻ݌ሺ݂1ሻ݌	

can be calculated easily from the training data, as well as the prior probability for a given class, 

ܥሺ݌ ൌ ܿሻ. 

3.2.2 Bayesian Network (BN). A Bayesian network represents the joint probability 

distribution of a set of variables{X1, X2,…. Xn} as a discrete acyclic graph and a set of conditional 

probability distributions that correspond to specific features (Figure 3.2b). The joint probability 

distribution can be calculated as )|()( )(iPa
i

ii XXPXP  	, where )(iPaX  denotes a set of parent 

variables for node i (Kjaerulff and Madsen, 2007). A small set of parent variables is preferred, 

because the network requires a parameter space that is exponential in the number of parents of 

each node (Lowed and Domingos, 2005).  

When the structure of the network is known, learning reduces to estimating conditional probability 

distribution parameters; otherwise the structure can be found by using a greedy hill-climbing 

search, starting from an empty network. Missing values can be estimated using an expectation 

maximization or maximum a posteriori probability algorithm (Jensen, 2001). Unlike NB, BN have 
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no strong independence assumption between features. BN are especially useful, because by using 

Bayes theorem it is easy to compute the probability distribution of children given the values of 

their parents, as well as the probability distribution of parents given the values of their children. 

That is, BN can proceed not only from causes to consequence, but also from consequence to causes 

(Uusitalo, 2007). BN are well suited for small and incomplete data and can achieve good prediction 

accuracy in such situations (Kontkanen, 1997). Structural learning is possible with BN, and 

combining different sources of knowledge is a powerful property of BN, because prior knowledge 

can come from many different sources with different distributions. An additional advantage of BN 

is that, once the structure and parameters are known, any query can be done very quickly. 

Nevertheless, there are a few challenges with using BN in practice, including discretizing of 

continuous variables, collecting and structuring expert knowledge, and implementing recursive 

feedback loops (Uusitalo, 2007).  

3.2.3 Decision tree (DT). Decision trees are among the simplest, most intuitive, easily 

interpretable, and widely used machine learning algorithms. They are tree-shaped models with 

tests carried out on feature values in the internal nodes and class labels in the leaves (Figure 3.2c). 

New instances are classified by passing through the nodes and corresponding tests within the tree, 

and the label of the final leaf reached by each instance is the predicted class for that example. The 

C4.5 algorithm (Quinlan, 1993) is a well-known algorithm for constructing decision trees. This 

algorithm builds the tree by a divide and conquer approach, choosing the most informative feature 

in each iteration using a heuristic function called the gain ratio (described in a subsequent section 

of this paper). Features that correspond to the largest information gain ratios will be chosen by the 

algorithm in earlier iterations (at higher levels of the tree) to divide the instances. This process 

repeats recursively to construct the sub-trees (lower levels of the tree). The C4.5 algorithm will 
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create a leaf and stop building the sub-tree if all of the remaining instances in the training set 

belong to the same class, or if the number of  instances remaining is fewer than the minimum 

defined in the algorithm. Eventually, after building a tree to the maximum size, the C4.5 algorithm 

will prune the tree backwards in order to reduce classification error due to over-fitting. DT are 

divide and conquer methods, and they are very useful for approximating discrete-valued functions. 

They are robust to noisy data and are capable of learning the disjunctives of conjunctions. Despite 

their simplicity and ease of understanding, there are some challenges in learning a DT, including 

determining the optimum depth of the tree, choosing an appropriate attribute selection method, 

and handling data with missing features (Mitchell, 1997) .  

3.2.4 Bootstrap Aggregation (BG). Bootstrap aggregation, which is also known as bagging 

(BG) is an ensemble method in which multiple versions of a predictor will be generated to drive 

an aggregated predictor. For predicting numeric values, aggregating would be a simple average 

over all models, whereas for classification purposes it would be the majority vote of classes 

(Breiman, 1996). Essentially, bagging improves prediction performance by building several 

models and letting them vote. Bagging can be used with any type of classifier, and it is easy to 

implement and computationally feasible. However, the black box nature of a bagged model makes 

it difficult to understand and interpret explicitly. Bagging uses the instability of a model to improve 

predictability. Therefore, bagging of stable models, like NB, will not improve predictive 

performance, but bagging of unstable methods, such as tree learners, will improve the 

predictability of the ensemble model (Breiman, 1994). In BG, using a training set with n features 

and M instances, the algorithm will create m new training sets by taking bootstrap samples from 

the original data set. Then, using any machine learning technique, m models will be trained using 

the m bootstrap samples, and the final value will be generated by averaging the model predictions 
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or voting for the majority class. In this paper, a tree learner category of classifiers that relies on a 

reduced–error pruning approach, commonly known as RepTree, was used (Witten and Frank, 

2005).  

3.2.5 Random forest (RF). Random forest is another ensemble method, in which training 

many classifiers using m bootstrap samples from the training set is combined with random 

selection of a subset of features for generating each of those classifiers (Breiman, 2001; Ho, 1995). 

Thus, a RF algorithm is very similar to BG, except that in each iteration of building a tree, RF 

picks a random subset of features and divides the instances based on the most informative feature. 

Because the task is limited to a small subset of features and instances, RF is a computationally 

efficient technique that can be used with highly dimensional data sets. One of the biggest 

advantages of RF, and the main reason it was chosen in this study, is that, RF is very efficient for 

estimating missing values and can maintain high accuracy when a large proportion of the data are 

missing, this is a common situation when analyzing producer-reported health data of dairy cattle.   

3.3 Model Assessment 

3.3.1 Receiver Operating Characteristic (ROC) curves. Traditionally, model performance 

assessment has relied on metrics derived from the confusion matrix. However, a scalar metric often 

provides a poor summary of the performance of a model, especially for nonparametric models. In 

addition, some performance metrics are sensitive to data discrepancies, such as skewness in class 

frequencies. In this case, the ROC curve offers the same information as the confusion matrix, but 

in a much more intuitive and robust fashion (Hamel, L., 2008). In our study, we compared the 

performance of different models based on the area under the ROC curve, which allows comparison 

of different classifiers in terms of their misclassification costs (Provost and Fawcett, 1997). The 

ROC curve maps false positive (FP) rate versus true positive (TP) rate. The FP rate is the 
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proportion of negative examples (non-pregnant cows) that are predicted incorrectly as positive 

examples (pregnant cows). The TP rate is the proportion of actual positive examples that are 

predicted correctly as positive examples (pregnant cows). Each point on the ROC curve 

corresponds to a threshold that can be used to classify examples into two classes. The upper left 

corner of the curve (FP=0, TP=1) is the ideal point with respect to performance of a classifier. In 

this paper, we report the area under the curve (AUC), which is defined as the area between the 

ROC curve and the horizontal axis (FP rate). The closer that AUC is to 1, the better the 

performance of the classifier. In this study, the ROC curve corresponding to each model was 

obtained by 5-fold cross-validation, and we compared the AUC of different classifiers statistically 

using t-tests. 

3.3.2 Feature selection. In order to evaluate the relevance of features in our analysis, we used 

information gain (IG) as the criterion and ranked features based on their IG. The IG statistic 

evaluates features by measuring their entropy or uncertainty with respect to the instance label or 

outcome.  

Imagine a binary classification problem with positive and negative instances (N+ and N-, 

respectively) in the training set, such that  the  sum of N+ and N- equals N. The total entropy (H) 

contained within a data set described by a binary class variable can be calculated from the 

proportion of negative and positive examples in the training set as follows:  
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Where ܰ ௜
ା is the number of positive instances (pregnant cows) with level ݅  of feature ݂  and positive 

class variable, ௜ܰ
ି is the number of negative instances (open cows) with level ݅ of feature ݂ and 

negative class variable, and ௜ܰ 	is the number of instances with level ݅ of feature ݂ with both 

positive and negative class variables. The change in entropy attributed to feature ݂ with c levels is 

called information gain (Russell and Norvig, 2002) and is calculated as:  
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The larger the IG, the greater the relevance of that feature to the class variable. Note that H is a 

measure of impurity in the data and IG is a measure of the reduction in impurity obtained by 

dividing the data based on that feature. Dividing IG by the H of each feature will give us the 

proportion of IG that is explained by increasing each unit of H for that specific feature. This ratio 

is defined as the Gain Ratio (GR). 
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To assess the statistical significance of differences between algorithms in AUC and the proportion 

of correctly classified instances (CCI), we used a two-tailed paired t-test. Paired sample values 

were computed for each of the five algorithms using five-fold cross validation.  

3.3.3 Lesion approach. The complexity of some machine learning algorithms sometimes leads to 

difficulty in interpreting the results intuitively. Therefore, in order to gain insight about the 

interrelationships among variables, a lesion approach was employed. In a lesion approach, 

potential explanatory variables are removed from the model one at a time to determine their 

contributions to performance of the model. 
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  4. RESULTS AND DISCUSSION 

As shown in Table 3.2, results  of the IG analysis indicate that   mean within-herd conception rate 

in the past three months, herd-year-month (HYM) of breeding, DIM at breeding, number of 

inseminations in the current lactation, and stage of lactation appeared among the top ten features 

for predicting insemination outcome in primiparous and multiparous cows. However, results of 

the GR analysis suggested greater impact of health traits, with ketosis, mastitis, retained placenta, 

and lameness among the top ten features in primiparous cows, and with mastitis, displaced 

abomasums, and retained placenta among the ten most important features in multiparous cows.  

4.1 Classification Accuracy 

Table 3.3 shows the AUC and the proportion of CCI for all five-folds of the cross validation, as 

well as the average of AUC and CCI across folds, for the five machine learning methods used in 

this paper. Likewise, Figure 3.3 compares the five machine learning techniques for classification 

accuracy between pregnant and non-pregnant primiparous cows. The RF algorithm outperformed 

all other methods, with cross-validation AUC of 0.756, which was significantly (P < 0.001) better 

than BG, DT, BN, and NB. Very similar results were obtained for multiparous cows, with cross-

validation AUC of 0.736 for RF, which exceeded (P < 0.001) other methods (Figure 3.4); including 

BG, DT, BN, and NB. A similar trend was observed for CCI (Table 3.3). Although RF showed the 

best performance among methods considered in this study, a considerable number of misclassified 

instances remained. This lack of accuracy can be explained, in part, by the nature of reproductive 

data. The insemination outcome phenotype is typically characterized by low heritability, and it is 

highly affected by many environmental factors, such as breeding practices, health events, nutrition, 

and production level. Therefore, a very comprehensive dataset is needed to predict the outcome of 
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an insemination event accurately, and many farms do not record all variables consistently or 

completely.  

Caraviello et al. (2006) used more than 300 potential explanatory variables and an alternating 

decision tree algorithm in a herd-based study and showed that hoof trimming, bedding in the dry 

cow pen, cow restraint system, and length of the voluntarily waiting period were the key variables 

affecting first service conception rate. They also found that bunk space per cow, temperature for 

thawing AI semen, percentage of low BCS cows within the herd, number of cows per maternity 

pen, strategy for using clean-up bulls, and milk yield at first AI were the most important 

explanatory variables for predicting pregnancy status at 150 DIM. They reported 75.6% and 71.4% 

accuracies of classification for predicting first service conception rate and pregnancy status at 150 

DIM, respectively, which are close to the accuracy levels achieved in the present study. 

 In a recent herd-based study, Schefers et al. (2010) reported R2 values of 35 and 40% for 

explaining the observed variation in conception rate and service rate, respectively. They reported 

that the percentage of repeated inseminations between 4 and 17 days post-AI, stocking density in 

the breeding pen, length of the voluntary waiting period, days from breeding to pregnancy check, 

and SCS were the most important features affecting conception rate. Number of lactating cows per 

breeding technician, use of a resynchronization program, utilization of soakers in the holding area 

during the summer, and bunk space per cow in the breeding pens were the most important features 

affecting service rate. The focus of the present study was slightly different, because the objective 

was to predict the outcome of each insemination event rather than identify significant 

environmental factors, but our results suggest a very similar conclusion in that plays a major role 

in determining reproductive outcomes.  
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In brief, the superior performance of BG and RF can be explained by the power of ensemble 

methods to generate high performance classifiers by training a collection of individual classifiers. 

Among the two, RF had slightly better performance in this study due to its property of random 

selection of feature subsets. Note that this discussion does not imply that RF is always the best 

algorithm for predicting insemination outcomes in dairy cattle. Grzesiak et al. (2010) attempted to 

classify cows into two categories based on reproductive performance using several environmental 

and phenotypic variables: “good” cows with ≤2 AI services per conception and “poor” cows with 

>2 AI services per conception. They found that a multilayer perceptron neural network with 2 

hidden layers was the best predictor, with 85.7% accuracy. Because they had a very small data set 

(768 training instances and 150 testing instances), and because artificial neural networks tend to 

over-fit small data sets (Mitchell, 1997), it is possible that their model was over-trained on that 

specific dataset and lacks generality for widespread use. A common practice in machine learning 

analyses is to evaluate several different learning algorithms on each specific task of interest, 

because the performance of these algorithms may change due to differences in the size, structure, 

and other characteristics of the data set. 

4.2 Lesion results 

In this study, a lesion approach was carried out using the best performing algorithm (RF) to further 

investigate the relative contributions of specific variables to predict the phenotype. The results of 

this analysis are shown in Figures 3.5 and 6 for primiparous and multiparous cows, respectively. 

Considering the inclusion of all variables in the model as the baseline, as in the case of primiparous 

cows (Figure 3.5), eliminating features other than HYM caused a change in predictive ability of 

<1% relative to the baseline model. In the case of HYM, removing it from the list of input features 

increased the AUC from 0.76 to 0.77 and increased the CCI from 0.72 to 0.73. In looking at the 
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curves carefully, none dominates the other over the entire decision space. In the high specificity 

region (left half of the plot) the baseline model (full model) is dominant. Conversely, in the high 

sensitivity region (right half of the plot) the model without HYM performs better. In this case, the 

decision will be based on the region in which one wants to operate, as well as the cost of the 

misclassified instances (FP and FN). In our study, the cost of FN instances (failing to inseminate 

a cow that would have become pregnant) is much greater than the cost of FP instances 

(inseminating a cow that will not become pregnant). Therefore, FN should be avoided more 

precisely than FP; in other words operating in the high sensitivity region is of greater interest, and 

therefore excluding HYM will be beneficial. In the case of multiparous cows (Figure 3.6), 

eliminating HYM caused AUC to change from 0.74 to 0.76 and CCI to change from 0.73 to 0.75. 

As shown in Figure 3.6, the reduced model dominates the full model in the entire plot, hence 

eliminating HYM from the model is helpful in both the high specificity and high sensitivity 

regions.  

The decision of whether or not to include HYM in the model represents a balance between 

explaining variation in the current data set and generalizing our results to other data sets. When 

included, HYM accounts for significant variation in fertility, because it describes the management 

practices and environment to which the cow is exposed at that point in time. However, many other 

features in the model can explain known management and environmental factors, and the marginal 

value of including HYM is accounting for unknown or unreported factors that are not repeatable 

across herds. 

After removing HYM from the feature list, a second round of the lesion analysis was carried out 

recursively. Results of the second round of the lesion analysis were not clear in terms of model 

performance and did not provide insight toward an interpretive conclusion. It is worth noting that 
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many of the explanatory variables are interrelated. Therefore, excluding one variable from the 

model will not have a major impact on model performance, because other correlated features in 

the model will compensate the effect of the excluded variable. However, inclusion of more 

variables in the model may enhance the robustness and generality of the model in the case of 

missing values (which are common in field data), because other variables can explain the effect of 

the missing value through their underlying relationships. Finally, this area should be explored 

further to gain additional insight into the interrelationships between features and the corresponding 

impact on predictability of the models. 

5. CONCLUSION 

The machine learning algorithms considered in this study were effective in predicting pregnant 

versus non-pregnant cows at the time of insemination. Among the algorithms considered in this 

paper, RF was significantly better in terms of classification accuracy (72.3% and 73.6% for 

primiparous and multiparous cows, respectively) and area under the ROC curve (75.6% and 

73.6%, respectively).  

Evaluation of features by information gain indicated that the mean within-herd conception rate in 

the past three months, HYM of breeding, DIM at breeding, number of inseminations in the current 

lactation, and stage of lactation when the breeding occurred were the most informative features for 

predicting insemination outcome. In addition, the gain ratio analysis suggested greater importance 

of health traits in explaining insemination outcomes relative to the information gain analysis. 

Based on the gain ratio, the incidence of ketosis, mastitis, retained placenta, and lameness (for 

primiparous cows) and the incidence of mastitis, displaced abomasums, and retained placenta 

(multiparous cows) were the most important explanatory variables. The results of the lesion 
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analysis suggested that excluding the HYM of insemination from the feature set may improve the 

predictability of these models in independent data sets. 

Overall, results of this paper suggest that, although prediction of the insemination outcome for 

individual lactating dairy cows is extremely difficult, information regarding health, reproductive 

history, production level, and other environmental features can be used to identify highly fertile 

subsets of cows. Decision support tools developed using this methodology may allow dairy 

farmers to optimize their breeding programs by targeting animals that are most likely to become 

pregnant. Such tools could be especially valuable in herds that utilize gender-enhanced semen or 

expensive semen from high merit sires. 
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Table 3.1. Description of features (explanatory variables) used for predicting the outcome 

of insemination events cows. 

   Primiparous cows Multiparous cows 

No Feature  Type Levels Mean SD Missing % Level
s 

Mean SD Missing % 

1 Herd-Year-Month Nominal 2672 - - 0 2786 - - 0 

2 Mean Conception Rate in 
the herd 

Numeric - 0.36 0.07 0 - 0.31 0.064 0 

3 Lactation  Numeric - - - - 8 2.9 1.176 0 

4 Stage of Lactation Numeric - 4.94 2.4 0 16 4.94 2.34 0 

5 Age at calving (month) Numeric - 24.2 2.6 0 115 50.64 16.69 0 

6 Energy corrected milk 
yield(kg) 

Numeric - 41.69 7.62 0 - 43.74 8.21 0 

7 Fat/Protein Ratio Numeric - 117.6 24.2 5 228 116.9 26.4 5 

8 SCS Numeric - 2.9 1.7 37 87 3.6 1.97 33 

9 Previous Days Open Numeric - - - - 371 133.9 73.8 3 

10 Previous Times Breed Numeric - 1.7 1.1 14 21 2.74 2.2 4 

11 Current Times Breed Numeric - 1.6 1.9 0 10 1.6 1.9 0 

12 Mastitis Binary 2 0.04 0.19 0 2 0.07 0.25 0 

13 Lameness Binary 2 0.01 0.09 0 2 0.02 0.14 0 

14 Ketosis Binary 2 0.001 0.03 0 2 0.00 0.04 0 

15 Displaced Abomasums Binary 2 0.001 0.03 0 2 0.00 0.04 0 

16 Retained placenta Binary 2 0.05 0.21 0 2 0.08 0.26 0 

17 DIM at Breeding Numeric - 120.9 54.7 6 - 122.4 54.4 6 

18 Breeding Protocol Nominal 13 - - 9 13 - - 9 

19 Sex of the Previous Calf Binary 2 - - 39 2 - - 33 

20 Birth Difficulty in Last 
Gestation 

Nominal 5 - - 39 5 - - 56 
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21 Multiple Birth in the Last 
Gestation 

Binary 2 - - 40 2 - - 56 

22 PTA of Daughter Pregnancy 
Rate for Calf 

Numeric - -0.07 0.89 88 - 0.152 0.88 85 

23 PTA of  Daughter 
Pregnancy Rate for Sire of 
the Cow 

Numeric - -0.47 1.52 29 - -0.38 1.498 41 

24 Calf Sire Conception Rate Numeric - 0.67 2.01
8 

92 - 0.59 2.04 92 

25 Inbreeding Coefficient of 
the cow 

Numeric - 1.5 2.12 88 - 1.5 2.12 85 

26 Pregnancy Binary 2 - - 0 2 - - 0 
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Table 3.2. Features used to predict insemination outcomes in primiparous and multiparous 

Holstein cows, as ranked by information gain and gain ratio. 

 Primiparous Multiparous 
 Information Gain1 Gain Ratio2 Information Gain Gain Ratio 
Rank     

1 Herd-Year-Month Mean Conception Rate in 
the herd 

Herd-Year-Month Mean Conception Rate in the 
herd 

2 Mean Conception Rate in the 
herd 

Ketosis Mean Conception Rate in the 
herd 

Stage of Lactation 

3 Stage of Lactation Current Times Breed Stage of Lactation Herd-Year-Month 
4 DIM at Breeding Stage of Lactation DIM at Breeding DIM at Breeding 
5 Current Times Breed Herd-Year-Month Current Times Breed Mastitis 
6 Breeding Protocol DIM at Breeding Previous Times Breed Current Times Breed 
7 PTA of  Daughter Pregnancy 

Rate for Sire of the Cow 
Mastitis Previous Days Open Previous Times Breed 

8 Age at calving (month) Retained Placenta Age at calving (month) Previous Days Open 
9 Energy corrected milk yield 

(kg) 
Lameness Breeding Protocol Displaced Abomasum 

10 SCS Breeding Protocol Lactation Number Retained Placenta 
11 Birth Difficulty in Last 

Gestation 
PTA of  Daughter Pregnancy 
Rate for Sire of the Cow 

SCS Age at calving (month) 

12 Previous Times Breed Age at calving (month) Mastitis Breeding Protocol 
13 Mastitis Energy corrected milk yield  

(kg) 
PTA of  Daughter Pregnancy 
Rate for Sire of the Cow 

Energy corrected milk yield 
(kg) 

14 Retained Placenta Birth Difficulty in Last 
Gestation 

Retained Placenta Lactation Number 

15 PTA of  Daughter Pregnancy 
Rate for Calf 

Previous Times Breed Fat/Protein Ratio SCS 

16 Sex of the Previous Calf SCS PTA of  Daughter Pregnancy 
Rate for Calf 

PTA of  Daughter Pregnancy 
Rate for Sire of the Cow 

17 Fat/Protein Ratio Sex of the Previous Calf Energy corrected milk yield  
(kg) 

Fat/Protein Ratio 

18 Lameness PTA of  Daughter Pregnancy 
Rate for Calf 

Birth Difficulty in Last 
Gestation 

Lameness 

19 Ketosis Fat/Protein Ratio Multiple Birth in the Last 
Gestation 

Birth Difficulty in Last 
Gestation 

20 Inbreeding Coefficient of the 
cow 

Calf’s sire, Sire Conception 
Rate 

Sex of  the Previous Calf PTA of  Daughter Pregnancy 
Rate for Calf 

21 Calf’s sire, Sire Conception 
Rate 

Inbreeding Coefficient of the 
cow 

Lameness Multiple Birth in the Last 
Gestation 

22 Displaced Abomasum Displaced Abomasum Displaced Abomasum Sex of the Previous Calf 
23 Multiple Birth in the Last 

Gestation 
Multiple Birth in the Last 
Gestation 

Inbreeding Coefficient of the 
cow 

Inbreeding Coefficient of the 
cow 

24   Calf’s sire, Sire Conception 
Rate 

Calf’s sire, Sire Conception 
Rate 

25   Ketosis Ketosis 
 

1Information gain (IG) is a measure of entropy or uncertainty with respect to the instance outcome.                                               

 2Gain ratio is the result of dividing IG by the entropy of the feature, which is the proportion of IG that is 
explained by increasing each unit of the entropy of that specific feature 
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Table 3.3. Area under the ROC curve (AUC) and proportion of correctly classified instances (CCI) for each of the five classification 

algorithms1 by 5-fold cross validation in primiparous and multiparous cows.  

 Area Under Curve Correctly classified instances 

Algorithm Folds 

 1 2 3 4 5 Mean±SE 1 2 3 4 5 Mean±SE 

Primiparous 

NB 0.61 0.61 0.60 0.61 0.61 60.8 ± 0.004a 60.5 61.0 60.6 60.7 60.7 60.7 ± 0.19a 

BN 0.62 0.62 0.62 0.62 0.62 62.0 ± 0.00a 62.8 63.9 63.8 63.8 63.4 63.5 ± 0.46a 

DT 0.64 0.65 0.64 0.66 0.64 64.6 ± 0.009a 66.7 66.7 66.7 66.3 66.1 66.5 ± 0.29a 

BG 0.68 0.68 0.67 0.68 0.67 67.6 ± 0.005a 67.0 67.7 67.2 67.6 66.9 67.3 ± 0.36a 

RF 0.75 0.76 0.75 0.76 0.76 75.6 ± 0.005b 72.1 72.6 72.3 72.1 72.2 72.3 ± 0.21b 

Multiparous 

NB 0.61 0.61 0.61 0.60 0.61 60.8 ± 0.004a 63.3 63.7 63.3 63.7 63.5 63.5 ± 0.2a 

BN 0.62 0.61 0.61 0.62 0.62 61.6 ± 0.005a 68.0 68.2 67.8 68.3 68.0 68.1 ± 0.19a 

DT 0.61 0.60 0.62 0.60 0.61 60.8 ± 0.008a 68.6 69.2 68.9 68.9 68.8 68.9 ± 0.22a 

BG 0.67 0.67 0.67 0.67 0.67 67.0 ± 0.00a 70.2 70.5 70.3 70.4 70.5 70.4 ± 0.13a 

RF 0.74 0.74 0.74 0.73 0.73 73.6 ± 0.005b 73.4 73.9 73.9 73.6 73.3 73.6 ± 0.28b 

a-b Means within a column with different superscripts differ (P < 0.001). 
1Classification algorithms: Naïve Bayes (NB), Bayesian networks(BN), Decision Trees(DT), Bagging(BG), and Random Forests(RF). 
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 Figure 3.1. Histogram of mean conception rate in the 26 herds used in this study. 
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Figure 2. Schematic illustration of a) Naïve Bayes classifiers, b) Bayesian networks, c) Decision Trees. Days in milk (DIM), 

voluntiary waiting period (VWP),stage of lactation (Stage).  
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Figure 3.3. Receiver operating characteristic curves for five types of machine learning 

algorithms used to predict insemination outcome in primiparous cows. 
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Figure 3.4. Receiver operating characteristic curves for five types of machine learning 

algorithm used to predict pregnancy outcome in multiparous cows. 
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Figure 3.5. Receiver operating characteristic curves for full and reduced (without HYM of 

insemination) models of RF in primiparous cows in a lesion analysis.   
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Figure 3.6. Receiver operating characteristic curves for full and reduced (without HYM of 

insemination) models of RF in multiparous cows in a lesion analysis.  
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Optimization of Reproductive Management Programs using 
Lift Chart Analysis and Cost-Sensitive Evaluation of 

Classification Errors 
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1. ABSTRACT 

The common practice on most commercial dairy farms is to inseminate all cows that are eligible 

for breeding, while ignoring (or absorbing) the costs associated with semen and labor directed 

toward lowly fertile cows that are unlikely to conceive.  Modern analytical methods, such as 

machine learning algorithms, can be applied to cow-specific explanatory variables for the purpose 

of computing the probabilities of success or failure associated with upcoming insemination events.  

Lift chart analysis can identify subsets of high fertility cows that are likely to conceive, and are 

therefore appropriate targets for insemination (e.g., with conventional AI semen or expensive 

gender-enhanced semen), as well as subsets of low fertility cows that are unlikely to conceive and 

should therefore be passed over at that point in time. While such a strategy might be economically 

viable, the management, environmental, and financial conditions on one farm might differ widely 

from conditions on the next, and hence the reproductive management recommendations derived 

from such a tool may be suboptimal for specific farms. When coupled with cost-sensitive 

evaluation of misclassified and correctly classified insemination events can be potentially powerful 

tool for optimizing the reproductive management of individual farms.  In the present study, lift 

chart analysis and cost-sensitive evaluation were applied to a data set consisting of 54,806 

insemination events of primiparous Holstein cows on 26 Wisconsin farms, as well as a data set 

with 17,197 insemination events of primiparous Holstein cows on 3 Wisconsin farms, where the 

latter had more detailed information regarding health events of individual cows.  In the first data 

set, the gains in profit associated with limiting inseminations to subsets of 79 to 97% of the most 

fertile eligible cows ranged from $0.44 to 2.18 per eligible cow, depending on days in milk at 

breeding and milk yield relative to contemporaries.  In the second data set, the strategy of 

inseminating only a subset consisting of 59% of the most fertile cows conferred a gain in profit of 
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$5.21 per eligible cow.  These results suggest that, when used with a powerful classification 

algorithm, lift chart analysis and cost-sensitive evaluation of correctly classified and misclassified 

insemination events can enhance the performance and profitability of reproductive management 

programs on commercial dairy farms. 

Key words: machine learning, reproductive management, lift chart analysis, cost-sensitive 

evaluation, dairy cattle. 

 

2. INTRODUCTION 

The underlying physiological factors that determine the success or failure of an insemination event 

in dairy cows are complex and often unknown.  Conception rate has a major impact on farm 

profitability, because it affects the number of replacement heifers needed to maintain herd size, 

the capacity to generate and sell extra heifers, the proportion of pregnant cows in the herd, average 

milk production of these cows, insemination and veterinary costs, involuntary culling rate, and 

other factors (Britt, 1985; Meadows et al., 2005; Giordano et al., 2011). 

Previous studies have attempted to predict the outcome of an insemination event in lactating dairy 

cows based on results of ovarian palpation (Ludwich and Rader, 1967), interactions between stage 

of lactation and pregnancy status (Sharma et al., 1990) , or levels of nonesterified fatty acids and 

blood glucose (Garverick et al., 2013).  Other studies have considered reproductive management 

programs from an economic point of view, for example, by estimating the economic value of a 

pregnancy (De Vries, 2006) or carrying out an economic comparison of natural service and timed 

AI programs (Lima et al., 2010; Giordano et al., 2012).  

On most commercial dairy farms it is common practice to inseminate all cows that are eligible for 

breeding, with the hope that modest conception rates coupled with high service rates will lead to 
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efficient overall reproductive performance.  This strategy may be economically sensible when 

insemination costs, specifically semen and technician service, are low.  However, evidence that 

this strategy maximizes farm profitability is lacking, and insemination costs can be relatively high 

if gender-enhanced semen is utilized.  Several studies have indicated that targeted reproductive 

management of specific (groups of) cows could be more profitable (e.g., Giordano et al., 2012), 

but no study to date has attempted to predict the outcomes of insemination events for individual 

cows prior to the breeding while subsequently evaluating the benefits and costs of correct and 

incorrect breeding decisions, respectively. 

(Shahinfar et al., 2014) evaluated the classification accuracy of several machine learning 

algorithms when predicting the outcome of an insemination event for an individual cow based on 

the production, reproduction, health, and genetic information available prior to the insemination.  

The proportion of insemination events that were classified correctly as successes or failures was 

72.3% for primiparous cows and 73.6% for multiparous cows in 5-fold cross-validation using a 

random forest algorithm.  Classification accuracies of this magnitude bring into question the 

practice of inseminating every eligible cow, while ignoring the vast amount of information 

available about each cow’s genetic potential, health history, and lactation performance.  

Furthermore, we can carry out a lift chart analysis (Witten and Frank, 2005) to identify a subset of 

cows with much greater probability of conception than the entire pool of eligible cows.  While 

such an analysis would, for example, facilitate the use of expensive gender-enhanced or high 

genetic merit semen for mating the subset of cows most likely to conceive, it would be limited by 

the fact that evaluation of algorithms based only on classification accuracy implies that the benefits 

and costs associated with all correctly classified or misclassified events are equal.  In reality, the 

costs and benefits may differ considerably.  For example, if insemination costs are low, the cost of 
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failing to inseminate a cow that would have conceived (i.e., a false negative (FN)) is likely to be 

greater than the cost of inseminating a cow that will not conceive (i.e., a false positive (FP)).  And, 

for example, the benefit derived from inseminating a cow that will conceive (i.e., a true positive 

(TP)) may be greater than the benefit associated with failing to inseminate a cow that would not 

have conceived (i.e., a true negative (TN)).   

The objective of this study was to build upon the work of Shahinfar et al. (2014a), which 

showed that relatively high accuracy of classifying insemination events as successes or failures 

could be achieved prior to insemination, by using lift chart analysis to identify subsets of cows 

with high probability of conception and cost-sensitive evaluation to assess the economic benefits 

one might achieve by implementing such an approach for reproductive management of lactating 

dairy cows on commercial farms. 

 

3. MATERIALS AND METHODS 

3.1 Data 

 Two data sets were used in the analyses presented herein.  The first, which will be denoted as 

Data_26, consisted of 54,806 insemination events from 22,210 primiparous Holstein cows that 

were inseminated between 2000 and 2010 in 26 Alta Genetics (Watertown, WI) Advantage 

Program herds located throughout Wisconsin.  These breeding records represented a subset of the 

data used by Shahinfar et al. (2014), in which insemination events corresponded to three intervals 

of DIM, 60-90, 90-120, or 120-150, and three ranges of relative milk yield (RMY), between 18 

and 6% below the within-herd mean, between 6% below and 6% above the within-herd mean, or 

between 6 and 18% above the within-herd mean.  Mean conception rate in Data_26 was 32%, and 
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individual herds ranged from 18 to 44%.  Additional details about genetic predisposition, health 

history, and lactation performance of herds in Data_26 are provided in Shahinfar et al. (2014). 

The second, which will be denoted as Data_3, consisted of 17,197 insemination events from 5,356 

primiparous Holstein cows that were inseminated between 2002 and 2013 in three additional herds 

that were also located in Wisconsin. These herds were chosen, because they had more complete 

data regarding common early postpartum health disorders (i.e., mastitis, ketosis, lameness, 

displaced abomasum, metritis, and retained placenta) than the herds in Data_26.  In contrast to 

Data_26, the insemination events in Data_3 were not stratified by DIM or RMY, and all 

insemination events were analyzed jointly. The range in DIM at time of insemination was 12 to 

479 in Data_3. Mean across-herd conception rate in Data_3 was 42%, and means for individual 

herds ranged from 38 to 45%. 

As in Shahinfar et al. (2014), a total of 25 potential explanatory variables related to genetic 

predisposition, health history, and lactation performance that were known for each cow prior to 

insemination were considered when classifying insemination outcomes in Data_26 and Data_3.  

These included:  mean conception rate within the herd during the previous 3 months, age at calving, 

stage of lactation, DIM at first breeding, number of times bred during the current lactation, number 

of times bred as a yearling heifer, breeding protocol utilized, sire’s PTA for daughter pregnancy 

rate, service sire’s PTA for daughter pregnancy rate, service sire’s PTA for sire conception rate, 

inbreeding coefficient of the cow, sex of previous calf, fat:protein ratio at last test, ECM at last 

test, SCS at last test, and incidence of dystocia, mastitis, ketosis, retained placenta, lameness, 

displaced abomasum, and twinning in the current lactation. In the present study, herd, year, and 

month of insemination were considered as separate explanatory variables, whereas the study of 

Shahinfar et al. (2014) utilized herd-year-month as an explanatory variable. 
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3.2 Probability of Conception  

Because of its superior classification accuracy relative to other machine learning algorithms 

considered in Shahinfar et al. (2014), a random forest algorithm was used in the present study.  

Since this is an ensemble algorithm in which numerous classifiers are trained by repeatedly 

sampling from the original data, numerous decision trees are generated.  Therefore, the probability 

of conception for a particular insemination event corresponding to a given cow represents the 

aggregated probability across all trees and forests generated by the algorithm. In the present study, 

10-fold cross-validation was carried out within each of the nine subclasses in Data_26 that 

corresponded to a given range in DIM and a given level of RMY, and all 54,806 insemination 

events were included in the analysis.  Within each subclass, the proportion of correctly classified 

insemination events was calculated within each fold, and these were subsequently averaged across 

folds to determine classification accuracy.  In addition, the area under the receiver operating 

characteristic (ROC) curve, which has FP rate on the x-axis and TP rate on the y-axis, was 

computed for each of the nine subclasses. 

In contrast, Data_3 was randomly subdivided into two partitions.  The first contained 14,000 

insemination events, and this partition of the data was used to train the model and learn its 

parameters using 10-fold cross-validation, as described previously for Data_26.  The second 

contained 3,197 randomly chosen insemination events, and the purpose of creating this partition 

was to mimic a real-life situation in which a decision-making tool was initially developed and 

tuned using an established database (e.g., at a breeding company) and subsequently applied to new 

data on a commercial farm (e.g., by a field technician).  Therefore, the outcomes of the 3,197 

insemination events in the second partition were masked throughout the training process; at the 
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time of insemination data regarding the corresponding explanatory variables were fed into the 

model developed from the 14,000 events in the first partition in order to compute the probability 

of success or failure for each insemination event. 

All analyses were carried out on a monthly basis, due to the fact that variables such as 

fat:protein ratio and ECM are typically measured monthly in DHI milk recording programs.  

Therefore, for instance, it was assumed that a cow inseminated in one month could be declared as 

pregnant or re-inseminated in the following month and, for instance, a cow that was not 

inseminated in the current month could be inseminated or passed over a second time in the 

following month.  All explanatory variables regarding the genetic potential, health history, and 

lactation performance of a given cow were updated monthly, such that a cow with low probability 

of conception in a given month would tend to have low probability of conception in the subsequent 

month, but not strictly so.  Likewise, a cow with high probably of conception in one month would 

tend to have a high probability of conception in the following month, but this probability could 

decrease due to lameness, high SCS, or other factors.  In practice, one could consider a longer or 

shorter interval (e.g., 21 days) for compiling data regarding explanatory variables and generating 

predictions of insemination outcomes, and in herds with daily milk recording and automated 

measurement of physical activity and rumination patterns it would be possible to carry out such an 

analysis on a daily basis.   

 

3.3 Lift Chart Analysis  

In commercial applications of data mining algorithms that involve the marketing of consumer 

products, a lift chart analysis is often used to predict the increase in response rate that would be 

achieved by targeting a specific demographic group, as opposed to blanket marketing of a given 
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product to the entire population of consumers.  In the context of reproductive management of dairy 

herds, a lift chart analysis can be used to predict the gain in conception rate that would be achieved 

by inseminating a selected subset of cows with high probability of conception, as opposed to 

inseminating all eligible cows in the herd.  For example, consider a herd with 1,000 cows that are 

eligible for insemination, and assume that the mean conception rate for the entire herd is 0.30.  If 

we inseminate all of the eligible cows, 70% will not conceive, and our 1,000 inseminations will 

yield 300 pregnancies.  However, if we have a classification algorithm that is capable of identifying 

a subset of 400 cows for which the expected conception rate will be 0.60, we can limit our 

inseminations to this highly fertile subset, and by doing so we can generate 240 pregnancies from 

only 400 inseminations.   

In practical applications of such an analysis, we would have a classification algorithm that would 

predict the probability of success or failure for each potential insemination event, and we could 

rank these events according to their respective probabilities of success.  Therefore, we could 

consider a wide range of scenarios and, for example, we may be faced with the decision of whether 

to inseminate a subset of 400 cows with an expected conception rate of 0.60 or a subset of 700 

cows with an expected conception rate of 45%.  This concept is illustrated in the lift chart shown 

in Figure 4.1, in which the proportion of cows to be inseminated is shown on the x-axis, and the 

number of anticipated pregnancies is shown on the y-axis.  The gain in conception rate within a 

given subset, relative to the conception rate of the entire population of eligible cows, is known as 

the lift factor, which for the examples shown above would be (0.60 / 0.30) = 2.0 and (0.45 / 0.30) 

= 1.5, respectively. 
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3.4 Cost-Sensitive Evaluation 

Optimizing classification accuracy in a lift chart analysis, as described above, can be misleading 

if one does not consider the benefits and costs associated with the various types of correctly 

classified or misclassified outcomes, specifically TP, TN, FP, and FN.  It is naïve to assume that 

the costs of FP and FN errors are equal, and in practice the benefits of TP and TN outcomes may 

also differ.  In a two-class problem, one can construct a cost-benefit matrix that has diagonal 

elements representing the benefits of correct classification decisions (TP and TN) and off-diagonal 

elements corresponding to the costs of incorrect classification decisions (FP and FN), as shown in 

Table 4.1.  In the case of insemination events for lactating dairy cows, TP corresponds to the 

correct decision to inseminate a cow that will conceive, TN corresponds to the correct decision to 

refrain from inseminating a cow that would not have conceived, FP corresponds to the incorrect 

decision to inseminate a cow that will not conceive, and FN corresponds to the incorrect decision 

to refrain from inseminating a cow that would have conceived.    

The precise assignment of costs and benefits associated with TP, TN, FP, and FN decisions can be 

subject of considerable debate, but it is clear that these values will be influenced by cow-level 

factors such as DIM and RMY, herd-level factors such as 21-day pregnancy rate and culling rate, 

and population-level parameters such as heifer price and salvage value.  In the present study, we 

sought to demonstrate the concepts of lift chart analysis and cost-sensitive evaluation of classifiers 

using realistic economic values for commercial herds in Wisconsin, and we recognize that 

determination of the exact costs and benefits for a specific herd could easily justify another 

research study.   

In the present study, the cost-benefit matrix was constructed using the estimates of pregnancy 

values and days open from a dynamic programming model developed by Kalantari and Cabrera, 
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(2012).  As noted earlier, medium RMY corresponds to cows with milk yield between 6% below 

and 6% above the within-herd mean, whereas low RMY corresponds to cows with milk yield 

between 18 and 6% below the within-herd mean, and RMY refer to cows with milk yield between 

6 and 18% above the within-herd mean.  Figure 4.2 illustrates the conceptual trajectories during 

the lactation for the value of a non-pregnant cow (solid line) and the value of a pregnant cow 

(dashed line); actual values for these curves were calculated by Kalantari et al. (2012) and were 

used to derive the cost-benefit matrix in the following manner.  For a TP classification, the benefit 

corresponds to the difference between the value of a pregnant cow at point C on the dashed curve 

(one month after the insemination, when diagnosed pregnant) and the value of a non-pregnant cow 

at point B on the solid curve (one month after the insemination, when diagnosed as non-pregnant).  

In the case of a TN classification, the benefit corresponds to the difference between the value of a 

non-pregnant cow at point B on the solid line (one month after the insemination, when diagnosed 

as non-pregnant) and the value of a non-pregnant cow at point A on the solid line (at the time the 

cow was passed over for insemination).  Moving from point A in a given to point B in the 

subsequent month is an inevitable outcome that is associated with a reduction in the value of a 

non-pregnant cow, but no misclassification occurred due to a poor prediction or an errant 

management intervention, so a benefit of $0 was assumed.  

Table 4.2 shows the pregnancy values derived from the dynamic programming model of Kalantari 

et al. (2012) for each of the nine DMI by RMY subclasses of Data_26, as well as pregnancy values 

for 150 to 180 DIM at each level of RMY, which contribute to costs assigned to FN classifications.  

A pregnancy value and loss of pregnancy cost of $88 and $24.30 were assumed for the cost-

sensitive evaluation in Data_3, based on the average of values given in Table 4.2, respectively.  As 

noted earlier, and insemination cost of $25 was used for both analyses.  
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With regard to misclassified outcomes, the cost of a FP decision is depicted as the difference 

between point B on the solid curve for a non-pregnant cow (one month from now, when diagnosed 

as non-pregnant), and the point denoted as “-IC”, which represents the insemination cost.  The 

insemination cost, which was incurred unnecessarily due to an incorrect model prediction, was 

assumed to be roughly $25 (Olynk and Wolf, 2009). Conceptually, the most challenging case is 

the FN classification.  In this case, the cow would have become pregnant if she had been 

inseminated, but she was not inseminated due to an incorrect model prediction.  The opportunity 

cost for of incorrect decision can be calculated as the difference between points C and D on the 

dashed curve for a pregnant cow, where point D represents the value of a pregnancy two months 

after the foregone insemination.  The assumption behind this is, if we forego the opportunity to 

inseminate a cow that would have become pregnant, we will have another chance to inseminate 

that cow in the following month.   The insemination in the following month may or may not be 

successful, and the probability of conception at the subsequent insemination may differ if the cow’s 

health status or other explanatory variables change from one month to the next. 

 

3.5 Integration of Costs and Benefits into Classification Decisions 

Given a set of explanatory variables, a typical classification algorithm will assign a positive or 

negative outcome to a given insemination event based on an underlying probability threshold.  In 

other words, if the probability of conception exceeds a certain value the event will be classified as 

a success, and if it fall short of that value it will be classified as a failure. A decision threshold of 

0.5 is typically used to classify instances as success or failures. Alternatively this threshold, which 

is known as the score threshold in the machine learning literature, can be optimized for a given set 

of cost values for incorrect decisions and benefit values for correct decisions. If a cost-benefit 
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matrix with information about the values of TP, TN, FP, and FN classifications is available, this 

information can be coupled with the probability threshold to compute the costs associated with a 

particular classifier and probability threshold.  More importantly, the optimum probability 

threshold at which benefits are maximized (or costs are minimized) can be determined.  For 

example, if the decision in question is whether or not to inseminate a given cow, a cost-sensitive 

evaluation of the classifier can tell us the optimum number (and identities) of high fertility cows 

that should be inseminated, as well as the corresponding number (and identities) of low fertility 

cows that should not be inseminated, in order to maximize profitability of the reproductive 

management program.  Or, more generally, such an evaluation could help us identify a subset of 

cows that should be inseminated with gender-enhanced semen, a subset that should be inseminated 

with conventional semen, and a subset that should not be inseminated.  In the present study, 

benefits and costs associated with TP, TN, FP, and FN classifications were taken into account 

when evaluating new insemination decisions, but not when training the classifier; this is what 

differentiates cost-sensitive evaluation from cost-sensitive learning (Witten and Frank, 2005).  

This study focused on cost-sensitive evaluation, because previous studies  (Elkan, 2001) have 

shown that the vast majority of the gain associated with incorporating a cost-benefit matrix comes 

in the evaluation phase, rather than the learning phase (by cost sensitive learning procedures, such 

as changing the balance of positive and negative training examples). Elkan (2001) recommends a 

two-step process of training a classifier without considering cost and benefit information, followed 

by computing optimal decisions using probability estimates given by the classifier based on the 

cost-benefit matrix. 

By applying the elements of the cost-benefit matrix to different probability thresholds along 

the ROC curve, the costs and benefits of each potential decision were evaluated.  In Data_26, 10-
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fold cross-validation was used in conjunction with the cost-benefit matrix to determine the 

optimum probability threshold for each of the nine DIM by RMY subclasses, assuming a strategy 

of maximizing total profit of the reproductive program.  Estimates of the lift factor, as well as 

estimates of financial gains or losses, were subsequently evaluated in each of the nine subclasses.  

In Data_3, the optimal probability threshold was also determined by 10-fold cross-validation, and 

model results were saved and applied to the aforementioned partition of 3,197 independent 

insemination events for estimation of financial gains and losses, in order to mimic a real application 

of this decision-making tool on a commercial farm.   

 

4. RESULTS AND DISCUSSION 

Results of the Data_26 analysis, including classification accuracy, lift chart analysis, and cost-

sensitive evaluation, are shown in Table 4.3 for each of the nine DIM by RMY subclasses.  As 

noted earlier, results are from 10-fold cross-validation within the full population of eligible cows 

in each of the nine subclasses.  When the benefits and costs associated with various types of 

correctly classified and misclassified events were not considered, the accuracy of classifying 

upcoming insemination events as successes or failures (i.e., the proportion of correctly classified 

events) ranged from 0.58 to 0.80, whereas area under the ROC curve ranged from 0.61 to 0.80.  

No clear trends were observed between classification accuracy and DIM or RMY.   

In the subsequent lift chart analysis of Data_26, which is also shown in Table 4.3, conception 

rates in selected subpopulations of highly fertile cows within each DIM by RMY subclass ranged 

from 0.35 to 0.51.  These values were consistently greater than conception rates in the respective 

populations of all eligible cows, which ranged from 0.32 to 0.44.  The corresponding lift factors 

ranged from 1.02 to 1.15, which suggests that financial gains might be achieved by focusing 
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semen, labor, and supplies (e.g., for timed AI) on a selected subset of highly fertile cows rather 

than the entire population of eligible cows.   

Table 4.3 also shows results of the cost-sensitive evaluation of correctly classified and 

misclassified insemination events for each of the nine DIM by RMY subclasses, which was 

implemented using the cost-benefit matrix data shown in Table 4.2.  When costs and benefits 

associated with classification decisions were considered, the accuracies of prediction achieved by 

10-fold cross-validation ranged from 0.42 to 0.57. These accuracies tended to be lower than 

accuracies that were achieved when costs and benefits were ignored, because in this case the 

algorithm chooses a score threshold that maximizes the profit derived from correct and incorrect 

decisions, rather than the score threshold that simply maximizes prediction accuracy.  The 

optimum probability threshold (also known as the score threshold) reflects the point at which total 

profit of the reproductive management program is maximized, given a particular cost-benefit 

matrix and considering the algorithm’s ability to identify various highly fertility subsets of cows 

in the lift chart analysis.  The selected subsets of highly fertile cows represented from 79.0 to 

97.2% of the eligible cows in the population, depending on the DIM by RMY subclass.  This 

means that breeding the vast majority of cows was typically justified, presumably because 

insemination costs were low relative to the value of a pregnancy, noting that low insemination 

costs reflect the fact that semen of AI bulls used on commercial dairy farms in the US tends to be 

inexpensive.  Higher insemination costs, for example due to the use of gender-enhanced semen, 

would likely result in the selection of a smaller percentage of cows for insemination.  The target 

population refers to the group of cows that would conceive if they were inseminated, and this 

would be comprised of TP and FN classifications.  In our cost-sensitive evaluation, 90.3 to 99.0% 

of cows in the target population were identified as candidates to be inseminated by the 
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classification algorithm, so very few cows were missed as FN classifications.  The apparent 

contradiction between the identification of a very high percentage of the target population, while 

achieving relatively modest accuracy of prediction, reflects the large number of FP classifications.  

Such classifications occur frequently due to low insemination costs coupled with high pregnancy 

values, as noted earlier, which mean that FP classifications tend to be inexpensive mistakes.  Profit 

was calculated for the optimal reproductive management strategy, as determined by the lift 

analysis and cost-sensitive evaluation process, as well as for the base strategy in which all eligible 

cows were inseminated.  Gains in profit were achieved in all nine DIM by RMY subclasses by 

focusing inseminations on the subset of highly fertility cows, as identified by the algorithm 

described herein.  These gains ranged from $2783 for the population of 2291 eligible high RMY 

cows at 120 to 150 DIM, to $15,123 for the population of 13,745 eligible low RMY cows at 60 to 

90 DIM.  When expressed as the gain in profit per eligible cow, the gains ranged from a low of 

$0.44 per eligible medium RMY cow at 60 to 90 DIM, to a high of $2.18 per eligible high RMY 

cow at 90 to 120 DIM.  As noted earlier, the actual gain that could be achieved on a particular farm 

will depend on the cost-benefit matrix associated with that farm, which will be a function of 

pregnancy rate, culling rate, replacement heifer inventory, and related factors.  The gain will also 

depend on the algorithm’s ability to accurately differentiate successes and failures prior to the 

insemination, given a set of explanatory variables, and this will depend critically on the accuracy 

and completeness of data recording for these explanatory variables. 

Because the accuracy and completeness of data recording differs widely between farms, and 

because routine implementation of the decision-support tool described herein will likely involve 

centralized model development and parameter tuning with subsequent application by field 

consultants, we carried out a second analysis using Data_3.  That analysis, for which the results 
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are given in Table 4.4, involved development and tuning of the prediction model in a randomly 

selected partition of 14,000 insemination events on three farms with high quality data regarding 

infectious diseases, such as mastitis, and early postpartum metabolic disorders, such as ketosis. 

Very high accuracy of prediction was observed in these herds, with proportion of correctly 

classified insemination events of 0.80 and area under the ROC curve of 0.89.  Note that accuracies 

and areas under the ROC curve ranged from 0.58 to 0.80 and from 0.61 to 0.80, respectively, in 

Data_26.   

Greater accuracy of prediction should lead to a more informative lift chart, and Table 4.4 shows 

the lift chart analysis and cost-sensitive evaluation results corresponding to implementation of the 

aforementioned model in the 3197 randomly chosen independent insemination events that 

comprised the validation population. One can see that conception rate in the selected subpopulation 

of highly fertile cows was 0.66, as compared with 0.43 in the entire population of eligible cows, 

which results in a remarkably high lift factor of 1.55. When the costs and benefits of misclassified 

and correctly classified insemination events were taken into account, using a pregnancy value 

averaged across DIM and RMY subclasses in Table 4.2, the accuracy of prediction was 0.76 for 

an optimum probability (or score) threshold of 0.33. In this application, only 59% of the eligible 

population of cows were inseminated, yet these represented 92% of the target population of cows 

that would have conceived if inseminated.  In terms of profit, the total gain achieved by using the 

optimized reproductive management strategy derived herein, relative to the alternative of breeding 

all 3197 eligible cows, was $16,660.  On a per cow basis, the gain in profit was $5.21 per eligible 

cow, which was several-fold greater than the gains achieved with lower quality data, and hence 

poorer accuracy of prediction, in Data_26.  This difference demonstrates the importance of 
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accuracy and completeness of recording of potential explanatory variables, with respect to devising 

more profitable reproductive management programs. 

While it is true that data on many farms are incomplete or inaccurate, especially as regards 

health events, there exist a substantial number of modern dairy farms with strictly enforced 

standard operating procedures, meticulous recording of data, and new technologies for automated 

capture of health, management, and performance information.  Thus, although the results for 

Data_3 reflected the benefit of more accurate and complete health history data for individual cows 

as compared with herds in Data_26, there is still significant room for improvement in herds such 

as those represented in Data_3.  For example, while the present study considered the genetic 

predisposition of individual cows using PTA for daughter pregnancy rate, further gains could be 

achieved by using genomic predictions if most or all eligible cows were genotyped.  Similarly, 

while the present study considered each cow’s health history as recorded in the on-farm herd 

management software program, additional gains could be achieved by using health-related 

indicators captured by physical activity and rumination monitoring systems.  And finally, although 

the present study considered variables such as milk yield and fat:protein ratio at the most recent 

DHI test, future applications of this methodology might utilize milk weights, electrical 

conductivity, or mid-infrared spectral data recorded on a daily basis.   

Lastly, as noted earlier, strategies for maximizing the profit of reproductive management 

programs may differ widely between farms, depending on current performance, financial position, 

or future plans.  For example, a herd that is expanding may face a shortage of replacement heifers, 

and this could change the structure of the cost-benefit matrix for that herd.  Conversely, if 

replacement heifers are plentiful and inexpensive, this could lead to a much different cost-benefit 

matrix and, in turn, a different optimization strategy.  In theory, a 3x3 (or larger) cost-benefit 
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matrix could be implemented, for example, to classify eligible cows or heifers into subclasses 

corresponding to gender-enhanced semen, conventional semen, or do-not-breed (or use beef 

semen) reproductive management actions at a given time.  However, this would increase the 

complexity, particularly as regards determination of appropriate cost and benefit parameters.  

Fruitful topics for future research projects could include an assessment of the extent of variation 

in cost and benefit parameters between herds, as well as variation in these parameters within a herd 

over time, in addition to an evaluation of the sensitivity of recommended reproductive 

management actions to errors in the cost-benefit matrix. Previous authors have recommended a 

delay in inseminating high-producing primiparous cows, because the pregnancy value associated 

with these highly persistent and fertile cows tends to be negative in early lactation (DeVries, 2006). 

Furthermore, McCullock et al., (2013) showed that profitability is enhanced by using gender-

enhanced semen on yearling heifers and a fraction of genetically superior cows, and Seidel, (2003) 

noted that gender-enhanced semen could be used to improve the genetic merit of herd replacements 

when its usage was targeted toward genetically superior cows or heifers. Although the present 

study did not consider genetic merit of the cows when constructing the cost-benefit matrix, 

optimizing costs and benefits of insemination decisions involving cows of high or low genetic 

merit in the presence of gender-enhanced semen could be the subject of a future study. 

 

 

5. CONCLUSIONS 

Although prediction of the outcome of an insemination event for a lactating dairy cow from dozens 

of potential explanatory variables is difficult, information regarding genetic predisposition, health 

history, lactation performance, and other factors can be used with modern analytical tools, such as 
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machine learning algorithms, to identify cow with substantially higher or lower probability of 

conception, as compared with the average of the population of eligible cows.  When semen is 

inexpensive and technician costs are modest, the common practice is to simply inseminate all 

eligible cows and ignore the costs associated with breeding lowly fertile cows with a history of 

health and reproductive problems. Lift chart analysis can be used to stratify the pool of eligible 

cows into those that are likely to conceive and those that should not be inseminated at a given point 

in time. When coupled with cost-sensitive evaluation of misclassified and correctly classified 

insemination events, the approach provides a potentially powerful tool optimizing the reproductive 

management strategy of a given farm under that farm’s economic conditions. Implementation of 

such a decision-making tool would likely require the assistance of a professional reproductive 

management consultant, but perhaps key features of this approach could be incorporated into 

existing dairy herd management software programs in the future.  The rapid development and 

adoption of systems and devices for real-time monitoring of animal health, activity, and 

performance will enhance our ability to refine, and derive greater benefit from, the types of 

decision-support tools described herein. 
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Table 4.1.  Conceptual illustration of cost-benefit matrix for classifying upcoming 

insemination events as successes or failures based on a set of explanatory variables, 

including benefits assigned to true positive (TP) classification of a cow that was 

inseminated and became pregnant, a true negative (TN) classification of a cow that was 

inseminated and would not have become pregnant if inseminated, a false positive (FP) 

classification of a cow that was inseminated but did not become pregnant, and a false 

negative (FN) classification of a cow that was not inseminated but would have become 

pregnant if inseminated.  The benefits and costs assigned to each type of classification 

decision in the present study are shown in parentheses. 

 

  Predicted Classification 
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Table 4.2. Pregnancy values ($) assigned to primiparous Holstein cows in the Data_26 

analysis, according to days in milk (DIM) and relative milk yield (RMY), as derived from 

the dynamic programming model of Kalantari et al. (2012).  Low RMY cows were between 

6 and 18% below the within-herd mean, medium RMY cows were between 6% below and 

6% above the within-herd mean, and high RMY cows were between 6 and 18% above the 

within-herd mean. 

 

  RMY 

  Low Medium High 

DIM 60-90 66 65 63 

90-120 89 87 86 

120-150 124 123 122 

150-180 149 148 147 
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Table 4.3.  Classification accuracy and results of the lift chart analysis and cost-sensitive evaluation in Data_26, according to 

days in milk (DIM) at and relative milk yield (RMY), when maximizing total profit of the reproductive management program.  

 60 to 90 DIM 90 to 120 DIM 120 to 150 DIM 

 Low RMY Medium 
RMY 

High RMY Low RMY Medium 
RMY 

High RMY Low RMY Medium 
RMY 

High RMY 

 Classification Accuracy 

Eligible Population (n) 13,745 11,015 5239 6109 5271 2372 4576 4188 2291 

Accuracy of Prediction 0.68 0.58 0.72 0.74 0.72 0.74 0.75 0.76 0.80 

Area under the ROC1 Curve 0.75 0.61 0.80 0.78 0.77 0.77 0.76 0.78 0.80 

 Lift Chart Analysis 

CR2 in the Eligible Population 0.44 0.44 0.44 0.37 0.36 0.34 0.33 0.32 0.34 

CR in the Selected Subpopulation 0.49 0.45 0.51 0.43 0.41 0.41 0.36 0.36 0.35 

Lift Factor 1.11 1.02 1.15 1.15 1.13                 1.20 1.09 1.13 1.04 

 Cost-Sensitive Evaluation 

Accuracy of Prediction 0.56 0.46 0.57 0.50 0.49 0.52 0.42 0.45 0.46 

Optimal Probability Threshold 0.11 0.10 0.14 0.10 0.09 0.10 0.05 0.06 0.05 

% of Eligible Population 85.5 97.2 84.5 83.6 85.3 79.0 89.9 85.6 87.0 

% of Target Population 95.7 99.0 97.2 96.1 96.7 95.0 97.8 96.9 90.3 

Profit with Optimal Strategy ($) 260,334 196,495 96,841 130,413 105,504 43,210 130,963 114,116 67,573 

Profit with Inseminating All Cows ($) 245,211 191,661 86,548 124,196 97,619 38,047 125,932 107,883 64,790 

Total Gain in Profit ($) 15,123 4834 10,293 6217 7885 5163 5031 6233 2783 

Gain in Profit per Eligible Cow ($) 1.10 0.44 1.96 1.19 1.50 2.18 1.10 1.49 1.21 

1Receiver operating characteristic 
2Conception rate 

8
3 
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Table 4.4.  Results of cost-sensitive evaluation and lift chart analysis for 3,197 independent 

insemination events in Data_3, with the objective of maximizing total profit of the 

reproductive management program. 

 

Classification Accuracy 

Eligible Population for Training (n) 14,000 

Accuracy of Prediction 0.80 

Area under the ROC1 Curve 0.89 

Lift Chart Analysis 

CR2 in the Eligible Population 0.43 

CR in the Selected Subpopulation 0.66 

Lift Factor 1.55 

Cost-Sensitive Evaluation 

Eligible Population for Validation (n) 3197 

Accuracy of Prediction 0.76 

Optimal Probability Threshold 0.33 

% of Eligible Population 0.59 

% of Target Population 0.92 

Profit with Optimal Strategy ($) 91,354 

Profit with Inseminating All Cows ($) 74,694 

Total Gain in Profit ($) 16,660 

Gain in Profit Per Eligible Cow ($) 5.21 
 1Receiver operating characteristic 

 2Conception rate 
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Figure 4.1.  Conceptual illustration of a lift chart analysis for the classification problem of 

predicting the success or failure of an insemination event, as carried out in the present 

study.  Line A shows the number of pregnancies that would be generated by inseminating a 

random subset of cows of a given size, whereas curve B shows the number of pregnancies 

that would be generated by inseminating subsets of cows of varying size (e.g., 20 or 40%) 

after ranking the insemination events from highest to lowest based on probability of 

conception. 
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Figure 4.2.  Conceptual curves that depict the value of a pregnant cow (dashed curve) and 

value of a non-pregnant cow (solid line) and value of a pregnant cow (dashed line), as used 

to assign the benefits of true positive (TP) and true negative (TN) classifications and costs 

of false positive (FP) and false negative (FN) classifications in the present study.  Point A is 

the value of the cow at the time of insemination.  Points B and C are the values of non-

pregnant and pregnant cows one month after the insemination, respectively.  Point D is the 

value of a pregnant cow two months after the insemination, and IC is the insemination cost. 
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Chapter 5: 

 

Introducing a Hybrid Genetic-Swarm Fuzzy Expert 
System for Genome-Enabled Prediction 
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1. Abstract: 

Fast and cost-effective prediction models are increasingly in demand for commercial use. The 

fuzzy expert system is distinguished from other black boxed non-parametric methods, such as 

random forests and artificial neural networks, because it is easy to understand and interpret. 

Information gained through a genetic algorithm and particle swarm optimization techniques were 

used to develop a fuzzy expert system to classify bulls based on a selected subset of 100 single 

nucleotide polymorphisms (SNPs) for three phenotypic traits. Advanced genetic algorithm 

operators were used for the construction of a rule set, and particle swarm operators were used to 

find optimal membership functions. The performance of the proposed model was suboptimal, 

presumably because of the structure of the data used in this analysis. 

 

2. Introduction 

Since the groundbreaking work of Meuwissen et al., (2001) there have been extensive efforts in 

animal and plant breeding to develop practical methods for selecting parents of the next generation 

based on predictions of their genetic merit derived from genotypes rather than traditional pedigree 

based estimated breeding values (EBVs).  

In animal and plant breeding the general belief is that most economically important traits have a 

complex heritage and are controlled by an infinite number of genes, each having a small effect. 

Therefore, to predict these complex traits a large number of variants must be considered 

simultaneously. The continuing advances in high-throughput genotyping and sequencing 

technology have led to the discovery of millions of SNP markers in the genomes of organisms. 

This allows exploitation of multi-locus linkage disequilibrium (LD) between quantitative trait loci 
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(QTL) and SNPs to predict genetic merit (de los Campos et al., 2013).  Other than a few researchers 

that have used machine learning (Long et al., 2009; Yao et al., 2013) and semi-parametric 

procedures (Gianola et al., 2006; de los Campos et al., 2010; Gianola et al., 2011), the majority  of 

researchers have focused on statistical methods such as Bayesian regression (Meuwissen et al., 

2001; Habier et al., 2011) and best linear unbiased prediction (BLUP) (Fernando and Grossman, 

1989; VanRaden, 2008). In addition to this, a few researchers have published review papers that 

compared different methods introduced for the purpose of genomic selection (GS) and investigated 

the pros and cons of each approach (Calus, 2009; Gianola et al., 2009; Campos et al., 2013). One 

reason for the lack of research on rule-based methods for GS is that knowledge acquisition in such 

a complex and highly dimensional space is the most limiting factor, and methods cannot be 

implemented by traditional procedures such as interviewing domain experts to extract the optimum 

set of rules and membership functions. Nevertheless, this obstacle can be overcome by the means 

of global search optimization methods, such as evolutionary algorithms.  

Fuzzy expert systems have been successfully developed and used for discovering gene regulatory 

networks (Woolf and Wang, 2000), classification (Chen and Tsai, 2008; Schaefer et al., 2009; Ho 

et al., 2006), and clustering (Maraziotis, 2012) of gene expression data in conjunction with other 

machine learning methods (Schaefer and Nakashima, 2010; Ganesh Kumar et al., 2012). In all 

cases, fuzzy based methods outperformed classical classification or statistical methods. However, 

there has not been any research to investigate the ability of a fuzzy expert system in GS in animal 

or plant breeding.  

Fuzzy set theory provides an approximate, yet effective, means for describing the characteristics 

of a system that is too complex or ill-defined to admit precise mathematical analysis (Zadeh, 1975, 

1978).The fuzzy approach is based on the fact that the key elements in human thinking are a class 
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of objects, not just numbers, in which the transition from membership to non-membership is 

smooth rather than crisp. Most of the logic behind daily based human reasoning is not the 

traditional binary or even multivalued logic, but rather logic with fuzzy truth and fuzzy rules of 

inference (Pal, 1999).  

The objective of this study was to develop a fuzzy expert system empowered by two stochastic 

machine learning methods, in order to construct the knowledge base for genome enabled selection 

of dairy cattle for daughter pregnancy rate (DPR). Furthermore, this method’s performance was 

compared with the performance of  one commonly used method in the field of animal breeding, 

known as genomic BLUP (GBLUP) and methods used commonly in the field of machine learning, 

such as random forest (RF), ordinary least square (OLS), and support vector machine (SVM) 

algorithms.  

3. Material and Methods 

3.1 Data 

Genotypes of 10,618 Holstein bulls using the Illumina BovineSNP 50k Bead Chip were provided 

by USDA-ARS Animal Genomics and Improvement Laboratory (Beltsville, MD). Daughter yield 

deviations (DYDs) for DPR were considered as the phenotype. After removing bulls without 

daughter information, 8,010 bulls born from 1952 to 2005 were kept in the dataset for later 

analysis. The dataset was divided into two portinos based on birthdate; 7,000 bulls born before 

July 1, 2005 were kept as the training set, and the remaining 1,010 bulls born after this date were 

considered as the testing set.  

A brief description of the data distribution is presented in Table 5.1. SNP markers with a call rate 

lower than 90% or minor allele frequency below 5% were removed using Plink (Purcell et al., 

2007).  After SNP editing, 40,812 SNPs were available for the analysis. In order to decrease the 
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dimension of the dataset and exclude redundant SNPs that were in linkage disequilibrium (LD) 

with each other, a LD pruning procedure was performed using Plink. A subset of 17,310 LD-

pruned SNPs were obtained using r2 ≤ 0.4, and only this subset of SNPs was included in subsequent 

analyses and model development.  

 

3.2 Definition of the phenotypes used in this study: 

Yield deviation represents the yield of an animal adjusted for all effects other than genetic merit 

and error. It contributes indirectly to the breeding value of its sire, after it has been combined with 

information from its parents and offspring. Thus, the progeny contribution is a regressed measure, 

and it is not independent of information from parents. Therefore, an independent and unregressed 

measure of progeny performance is the DYD (VanRaden and Wiggans, 1991) which is basically 

a weighted average of the yield deviations of all progeny after correction for known fixed effects 

and the breeding values of mates (Mrode, 2005).  

 

3.3 Daughter pregnancy rate: 

Genetic evaluations for DPR of US dairy bulls have been available  since 2003. Because of the 

low heritability of fertility traits, approximately 0.04, the predicted transmitting abilities (PTAs) 

for daughter fertility will have a poor reliability for bulls that don’t have a large number of progeny. 

For bulls with only first-crop daughters (from the initial progeny testing), reliability is about 60%, 

and parent average still provides a major contribution. As computed presently, pregnancy rate (PR) 

and days open are, in fact, the same trait; a 1% increase in PR is roughly equal to 4 additional days 

open. PR is commonly used for herd management purposes, as a measure of how quickly cows in 

a herd become pregnant after the voluntary waiting period, and it is computed as the percentage of 
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eligible non-pregnant cows that become pregnant during each 21-day time period. The linear 

approximation was introduced by VanRaden et al., (2004) and is as follows:  

DPR = 0.25 (233 – DO) 

The PTA for DPR is a measure of a sire’s effect on the female fertility of his daughters, opposed 

to sire conception rate (SCR), which measures male fertility and is computed as the difference in 

conception rate of the bull’s semen in comparison with other bulls in the population. 

 

3.4 Estimates of SNP effects: 

In order to estimate each of the 17,310 SNP effects on the trait of interest, a whole genome 

Bayesian regression method was used. The BGLR R-package (de los Campos and Perez 

Rodriguez, 2012) was used to carry out the analysis.  

The general structure of standard Bayesian Linear Model used in GS is:  

ܲሺߤ, ,ߚ ,ݕ|ଶߪ ߱ሻ 

∝ ,ߤ|ݕሺ݌ ,ߚ ,ߤሺ݌ଶሻߪ ,ߚ  ଶ|߸ሻߪ

∝ෑܰ

௡

௜ୀଵ

	ሺݕ௜|ߤ ൅	෍ ,௝ߚ௜௝ݔ ݌ෑ	ሻ	ଶߪ

௣

௝ୀଵ

	൫	ߚ௝	ห߱ሻ	ܲሺߩଶ
௉

௝ୀଵ
ሻ 

 

where 

ܲሺߤ, ,ߚ ,ݕ|ଶߪ ߱ሻ 

is the posterior density of the model unknowns 

ሼߤ, ,ߚ  .ଶሽߪ

given the data (y) and hyper parameters.  Also, 
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ሺ߱ሻ, ,ߤ|ݕሺ݌ ,ߚ ଶሻߪ ൌෑܰሺݕ௜	|ߤ ൅෍ݔ௜௝

௣

௝ୀଵ

,௝ߚ ଶሻߪ

௡

௜ୀଵ

 

is the conditional density of the data given the unknowns, which for continuous traits are 

commonly independent normal  densities with mean 

,ߤ|௜ݕሺܧ ,ߚ ଶሻߪ ൌ ߤ	 ൅	෍ݔ௜௝ߚ௝

௣

௝ୀଵ

 

and variance 

,ߤ|௜ݕሺ	ܴܣܸ ,ߚ ଶሻߪ ൌ  .ଶߪ

The quantity 

ܲሺߤ, ,ߚ ଶ|߱ሻߪ ∝ෑ݌

௣

௝ୀଵ

	൫	ߚ௝	ห߱ሻ	ܲሺߪଶሻ 

is the joint prior density of model unknowns, including the intercept (µ) , which is commonly 

assigned a flat prior, marker effects {βj}, which are commonly assigned IID informative priors, 

and the residual variance ሺߪଶሻ, which is commonly assigned a scaled-inverse chi-square prior 

with degree of freedom d.f. and scale parameter S, which is 

ଶሻߪሺ݌ ൌ .|d	ଶߪଶሺିݔ f. , ܵሻ. 

Here we use a parameterization 

.ଶ|dߪሺܧ f. , Sሻ ൌ ሺd. f.ൈ Sሻ/ሺd. f. െ2ሻ  

(de los Campus 2013). 

In Bayes B, a point of mass of zero and a scaled-t density slab priors are used to induce a 

combination of variable selection and shrinkage (Meuwissen et al., 2001). Therefore, we have set 

the majority of SNP effects to zero a priori, which is in alignment with our purpose of subset 

selection of most informative SNPs. The model was fitted with 50,000 iteration of Gibbs 
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sampling; the first 25,000 iterations were considered as burn-in and discarded. Next, the 99% 

confidence interval for each SNP was calculated, and the 100 most SNPs with largest estimated 

contributions to the variance were selected for further model development.  

 

4. Genome-Enabled selection using a novel genetic swarm fuzzy 

expert system  

As noted earlier, GS) is becoming increasingly popular in animal and plant breeding and has 

recently gained attention in human genetics (de los Campus et al., 2013). Many different methods, 

including Bayesian regression (Meuwissen et al., 2001; Habier et al., 2011), GBLUP (VanRaden, 

2008), and machine learning methods  (Long et al., 2009) have been proposed.  However, there 

have been no attempts to date to use soft computing techniques, such as fuzzy expert systems. 

Fuzzy expert systems implement nonlinear mapping from the input space to the output space and 

classifies observations into different categories. This approach can also be used for breeding value 

prediction using neuro-fuzzy models (Shahinfar et al., 2012). 

 

4.1 Fuzzy Logic: 

 Fuzzy logic is a type of multi-valued logic, dealing with reasoning that is uncertain rather than 

fixed and precise. Against traditional binary sets, which variables take either true or false values, 

in fuzzy logic variables are associated with a truth value that ranges between 0 and 1. Fuzzy logic 

has been developed to handle the concept of partial truth, in which the truth value may fall between 

completely true and completely false (Novák et al., 1999).  
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It is an approach to compute based on "degrees of truth" rather than the usual Boolean logic on 

which modern computers are based (Zadeh, 1965). Fuzzy logic includes 0 and 1 as extreme cases 

of truth, and it may be better to see fuzzy logic as the way reasoning really works and binary or 

Boolean logic is simply a simplified special case of it (Rouse, 2006) 

 

4.1.1 Fuzziness vs probability:  Fuzziness describes the ambiguity of an event. What it measure 

is the degree to which an event happens, not whether it happens or not. On the other hand, 

randomness describes the uncertainty of an event’s occurrence. Randomness describes how 

frequently an event occurs or not and how you can bet on it. In another words, “whether an event 

occurs is “random” and the  degree it occurs is “fuzzy””(Kosko, 1990).  

 

4.1.2 Fuzzy expert systems: A fuzzy expert system is simply an expert system which uses a set 

of if-then rules and respective membership functions to reason about data. The general form of a 

rule in a fuzzy expert system is as follow: 

ܴ௜: .	݀݊ܽ	௜ଵܣ	ݏ݅	௤ଵݔ	݂݅ … .  ௜ܥ	ݏ݅	ݏݏ݈ܽܿ	݄݊݁ݐ	௜௡ܣ	ݏ݅	௤௡ݔ	݀݊ܽ

where ܣ௜ଵ ௤ଵݔ	 ௜௡ are antecedent fuzzy sets of the inputsܣ…… … . .  ௜ is the output classܥ ௤௡ andݔ

label. A set of such rules forms the rule base for the fuzzy expert system in which qualitative 

reasoning to infer the results is performed..  Fuzzy if-then rules along with membership functions 

form the core part of a fuzzy inference system. 

Fuzzy inference is the process of the mapping from a set of given input to an output using fuzzy 

logic. This mapping then provides a basis which can be used in decisions making or pattern 
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recognition.Different types of fuzzy reasoning have been developed. Depending on the types of 

fuzzy reasoning and knowledge base (fuzzy if-then rules) used, most fuzzy inference systems (FIS) 

would be classified into two types: 

Mamdani: This was among the first control systems built using fuzzy set theory. It was formed as 

an attempt to control a steam engine and boiler combination by synthesizing a set of linguistic 

control rules obtained from experienced human operators (Mamdani, 1977). The overall fuzzy 

output is obtained by applying “max” operation to the fuzzy outputs (each of which is derived by 

applying “min” operation to the firing strength and the output membership function of each rule). 

Different methods have been proposed to calculate the final crisp output based on the overall fuzzy 

output. These could be centroid of area, bisector of area, mean of maxima, and maximum criterion, 

to name a few. 

Takagi-Sugeno: In Takagi and Sugeno’s fuzzy if-then rules (Takagi and Sugeno, 1983)a linear 

combination of input variables plus a constant term. The final output of the system would be the 

weighted average of all rule’s output. Most of the  differences come from the specification of the 

consequent part (monotonically non-decreasing or bell-shaped membership functions, or crisp 

function) and also the de-fuzzification (weighted average, centroid of area, etc.) schemes (Jang, 

1993). 

FISs are also known as fuzzy-rule-based systems as well. Generally an FIS is contain the following 

functional parts:  

1) Knowledge base, which consists of a rule base containing a set of fuzzy if-then rules and a 

database that defines the membership functions of the fuzzy sets used in the fuzzy rules; 
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2) Fuzzification interface, which transforms the crisp inputs into degrees of belongingness to each 

of the linguistic values;  

3) Decision-making unit, which performs the inference operations on the rules, by combining the 

membership values on the premise part to get the firing strength (weight) of each rule and 

generatingthe qualified consequence (either fuzzy or crisp) of each rule depending on the firing 

strength,  

4) Defuzzification interface, which transform the fuzzy results of the inference into crisp outputs 

by aggregating the qualified consequences. 

 

Mamdani and Sugeno FIS (Jang, 1993; Pal, 1999) were used in this research, and their 

performances were compared against each other as well as with that of GBLUP, RF, OLS, and 

SVM.  

In the model developed herein, a set of input SNPs were compared against the antecedent 

component of each if-then rule, and in the case of a match the response (output) was obtained 

through the fuzzy implication operation. The response of each rule is weighted by the extent to 

which the rule is fired. Next, the responses of fired rules for a particular input are combined to 

obtain the final class prediction of that input set. 

In the development of FIS, knowledge acquisition is the most critical part. It can be done 

practically, by using an expert’s knowledge through a questionnaire or interview, or alternatively 

by appllying data mining tools to existing databases. In the current study, because of the large 

number of SNPs, there would be an infinite number of possible rules, and therefore no experts 

exist to define a complete rule set and the optimum membership functions for individual SNPs that 

are included in antecedents of the rules.  
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One or more machine learning methods can be used to tackle this problem. The hybrid proposed 

fuzzy system uses a genetic algorithm (GA) to come up with the optimum set of if-then rules and 

particle swarm optimization (PSO) to tune the membership function points.  

 

   5. Genetic-Swarm Fuzzy algorithm: 

The schematic structure of the implemented algorithm is shown in Figure 5.2. As shown in the 

figure, the fitness of the current rule set and corresponding membership functions (MFs) are 

evaluated during each iteration. Then, during the GA run, a higher fitness rule set is created and 

selected by GA operations. Next, in the PSO run, the optimal points of MF are obtained. The new 

rule set and MFs will be used to create a new FIS. The algorithm was implemented in Matlab 

(R2013a, Student version). Mamdani and Sugeno fuzzy inference systems with minimum, 

maximum, production, and center of gravity approaches to determine the crisp output were 

developed. The algorithm is designed such that it has the memory of the past population and 

previous MFs, so at each point it is able to compare the current rule set, MFs, and parameters with 

those fitted previously and use them to classify observations in the testing set.  

 

5.1 Representation of the rule set: 

Each rule of the rule set was represented by an integer string. Each rule has two parts and is shown 

conceptually in Figure 5.3. The, S1, S2,…Sn represent SNP1 to SNPn from the input file and were 

coded as 0, 1, 2, or 3 based on estimated SNP effect and minor allele frequency. A score of 0 

means no impact on the trait, whereas scores of 1, 2 or 3 correspond to low, medium, or high 

impact on the trait, respectively. A single binary digit represents the output class of the rule and 
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can take values of 1, 2, or 3 to represent poor, medium, or high for the output variable. The third 

part of each rule is a floating point number as a default weight, which can take 0.66 or 0.99 as the 

degree of belief to the rule. 

 

5.2 Operations of the rule set: 

The primary advantage of GA comes from crossing over and selection operations in producing a 

new state space at each successive generation. Operations like mutation have the tuning role to 

prevent premature convergence in runs of GA. Several selection and crossing over procedures (all 

inspired by natural population evolutionary processes) have been suggested by researchers in this 

field. In the present study, tournament selection and two-point crossing over were used. In 

tournament selection, an individual will be selected randomly from the population, and the most 

fit will have a chance to be the predecessor of the next generation of solutions. Although any size 

of tournament is possible between individuals of the population, we only considered a tournament 

between a pair of randomly chosen individuals in the present study. It is worth noting that, in this 

case, each individual is a collection of rules. After the population of the next generation is 

constructed, two-point crossing over is applied between two randomly selected strings from two 

selected individuals, based on a roulette wheel followed by the gene cross swap operator (GCSO) 

introduced by Devaraj and Gunesh (2010) and mutation. In GCSO, two randomly selected SNPs 

will be swapped between two individuals. Mutation was applied with a very low probability, to 

add diversity to the population by switching each bit from 0 to either 1, 2, or 3; from1 to either 0 

or 2; from 2 to either 1 or 3, or from 3 to either 2 or 0 with uniform probability. 
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5.3 Representation of MF: 

To represent the MF for each SNP, the 99% confidence interval of the SNP’s estimated effect from 

the training data was obtained from BayesB and used as the lowest and highest limit of the MF. 

This range was arbitrarily divided into three membership functions, named as low (L), medium 

(M), and high (H), as shown in Figure 5.4. Trapezoidal membership functions were used to 

represent L and H, and a triangular MF was used to represent M. There are three points to represent 

each function, and therefore a total of nine membership points are needed for each input SNP. As 

mentioned above, the first and last points are fixed, because they represent the confidence limits 

of the estimated SNP effect. The seven intermediate points are optimized during runs of PSO in 

the algorithm, such that each point has  boundaries limited by two other points; P2 has {P1, P9}, 

P3 has {P2, P9}, P4 has { P2, P3}, P5 has {P4, P9}, P6 has {P5, P9}, P7 has {P5, P6}, and P8 has 

{P7, P9} as limits (Gunesh et al., 2012). 

 

5.4 Operations for MFs: 

Optimum MF points were found during runs of the PSO algorithm. The first and last points of each 

set of MF were fixed, and the seven intermediate MF points were optimized by standard velocity 

and position updating rules of a typical PSO algorithm, according the following equations: 

௧ାଵݒ
௜ ൌ ௧ݒݓ

௜ ൅ ܿଵݎଵൣݔො௧
௜ െ	ݔ௧

௜൧ ൅ ܿଶݎଶൣ݃௧ െ ௧ݔ
௜൧ 

In which ݒ௧ାଵ
௜ 	 is the velocity of particle i in the iteration t+1, and ݒ௧

௜ is the velocity of particle i in 

iteration t. Parameters ݓ, ܿଵ, and	ܿଶ are user-specified coefficients between 0 and 2, which could 

be the subject of fine tuning of the algorithm. Parameters ݎଵ, and	ݎଶ are random numbers between 

0 and 1 that are regenerated in each iteration to add stochasticity to the process. The ݔො௧
௜ is the 
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particle best solution up to iteration t, and	݃௧ is the global (swarm) best solution so far. After the 

velocity for each particle was calculated and checked to be within the boundaries of acceptable 

velocity, each particle’s position was calculated by the equation below and updated consequently: 

௧ାଵݔ
௜ ൌ ௧ݔ

௜ ൅	ݒ௧ାଵ
௜  

In which ݔ௧ାଵ
௜  Is the particle i’s position at iteration t+1, ݔ௧

௜, is the particle i’s position at iteration 

t and	ݒ௧ାଵ
௜  is the particle i’s velocity at iteration t+1. 

 

5.5 Fitness Function: 

The main core of any iterative learner system is the fitness function. It can be called loss function 

or cost function, depending on the discipline in which it has been used. Successful application of 

relative absolute error in previous studies (Shahinfar et al., 2014b) suggests its use as the fitness 

function because of two additional reasons. First, it measures absolute error, which is not affected 

by outliers, and second, it considers the relative magnitude of the error as compared with the 

prediction. Its form is shown below: 

݂ ൌ ሻݎ݋ݎݎܧ	݁ݐݑ݈݋ݏܾܣ	݁ݒ݅ݐሺܴ݈݁ܽ	୫୧୬ܩܴܣ ൌ ∑௠௜௡ሺܩܴܣ
|௣೔ି	௔೔|

|௔೔ି	௔ത|
௡
௜ୀଵ ) 

where ݌௜ is predicted value, ܽ௜ is actual value, and തܽ is the prediction by an arbitrary predictor, in 

this case the average of actual values (Witten and Frank, 2005). In general, it is always easier to 

maximize a fitness function, therefore the minimization problem given above can be transformed 

into a maximization problem as: 

ݏݏ݁݊ݐ݅ܨ ൌ 	
ߠ
݂
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in which θ is an amplifier constant.   

 

5.6 Rule coverage and accuracy: 

A rule-based classifier uses a set of IF-THEN rules to classify an object. An IF-THEN rule is an 

expression of the form: 

IF: CONDITION  THEN: CONSEQUENCE. 

For example: 

             IF SNP1 is AB, and SNP2 is AA, and….., and SNPn is AB THEN DPR is High. 

The IF part or the rule antecedent represents the precondition which must be checked from the 

input and the THEN part is the conclusion upon antecedent. Usually in the rule antecedent, one or 

more condition exists that is logically ANDed, while the rule consequence is a class prediction. If 

the condition in a rule antecedent holds for a given input entry, it can be said that the rule 

antecedent is satisfied and that the rule covers the entry (Han, 2012).  Consider two rules, where 

R1 correctly classifies 38 of the 40 entries it covers, but R2 covers only two entries and classifies 

both of them correctly. According to this logic, they have 95 and 100% accuracy, respectively. 

However, although R2 has higher accuracy, it covers only 2 entries, and therefore in rule 

assessment it is necessary to consider both coverage and accuracy. In the present study, an 

optimum set of rules was obtained from the training set analyses and assessed by coverage and 

accuracy jointly: 

ሺܴሻ	݁݃ܽݎ݁ݒ݋ܥ ൌ ௖ܰ௢௩௘௥௘ௗ

௧ܰ௘௦௧௘ௗ
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ሺܴሻ	ݕܿܽݎݑܿܿܣ ൌ 	 ௖ܰ௢௥௥௘௖௧

௖ܰ௢௩௘௥௘ௗ
 

Where Ntested is the total number of testing set entries, Ncovered is the number of covered entries, and 

Ncorrect is the number of correctly classified entries among the covered rules. The criteria for 

coverage, assuming independence between the 100 SNPs in the model, was the percentage of 

similar SNPs in each test individual with the specific optimum rule being assessed at the time.  

 

6. Results and Discussion: 

The coverage and accuracy of each optimal rule were assessed by 6 criteria; accuracies of rules 

were calculated if that rule could cover 30, 40, 50, 60, 70, or 80% of the SNPs of each test 

individual. Then, each rule was allowed to classify all entries of the test seting that it covered. The 

average coverage and accuracy under the aforementioned criteria are shown in Table 5.2 With 

more conservative criteria, coverage decreased exponentially. In this table, Ncovered% means the 

percentage of the testing set which the optimum rule under investigation covered, and Ncorrect% is 

the percentage of correctly classified rules that this rule covers, averaged over all optimum rules. 

No rules satisfied 70% coverage criteria or more. The percentage of Ncovered was identical between 

Mamdani and Sugeno, basically because they used the same criteria for calculating Ncovered. 

However, Ncorrect was totally different and was close to zero in all cases. This may have occurred, 

because we could not find a proper fitness function. By increasing the coverage constraint, Ncovered 

and Ncorrect decreased from 99 and 85% to 93 and 84%, respectively, for Mamdani FIS. 

Comparing the performance of the hybrid introduced model with RF, OLS, SVM, GBLUP-100 

(GBLUP with only 100 selected SNPs), and GBLUP-17130 (GBLUP with all 17,310 SNPs), 
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Figure 5.5 shows that the hybrid genetic-swarm FIS applied herein had flat performance and 

predicted the same output value for all individuals in the testing set. Surprisingly, RF, OLS, SVM, 

GBLUP-100 and GBLUP-17130 were able to catch the trend in DPR despite the low heritability 

for the trait.  The reason for the flat behavior of the genetic-swarm FIS could be the high 

dimensionality of the rule set, an inappropriate fitness function or a suboptimal defuzzification 

method.  The optimum performance of the genetic-swarm FIS was achieved at generation 100, 

with population size of 50, a maximum of 500 rules, 70% probability of crossing over, 5% 

probability of mutation, 70% probability of gene swap, Winitial of 0.4, Wfinal of 0.2, C1 of 1.5, C2 of 

1.5, and C3 of 0.3.   

 

7. Conclusions 

Genetic algorithm and particle swarm optimization were implemented jointly for knowledge 

acquisition in a hybrid genetic-swarm fuzzy inference system. The algorithm introduced in this 

paper used a genetic algorithm to optimize rule sets and particle swarm optimization to optimize 

membership functions, in a sequential manner. Unfortunately, the attempt to develop for a fuzzy 

inference system for prediction of genetic merit of dairy bulls for daughter fertility based on a 

selected subset of SNPs failed due to flat behavior of the rule sets and subsequent classifications.  

Classification performance might be improved by further tuning of model parameters, and if 

successful the approach developed herein can be used as a decision support system for selection 

of animals and aiding management decisions.  
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Table 5.1. Description of daughter pregnancy rate phenotypes used in the present study. 

 

 N Mean SD Min Max 
Training 7,000 -0.45 1.87 -9.4 7.1 

Testing 1,010 -0.11 1.80 -5.9 5.2 

Total 8,010 -0.40 1.86 -9.4 7.1 

 

 

 

 

Table 5.2. Coverage and accuracies of Mamdani and Sugeno fuzzy inference systems 

according to different criteria for coverage. 

 

 

 Coverage (%) 

 

30 40 50 60 70 80 

 Ncover% Ncorrect% Ncover% Ncorrect% Ncover% Ncorrect% Ncover% Ncorrect% Ncover% Ncorrect% Ncover% Ncorrect% 

Mamdani 99.98 84.51 93.87 84.49 33.46 84.24 0.93 84.04 0.00 0.00 0.00 0.00 

Sugeno 99.98 0.00 93.79 0.00 33.47 0.00 0.93 0.00 0.00 0.00 0.00 0.00 
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Figure 5.1. Estimated squared marker effects and residual variances for daughter 

pregnancy rate (DPR), as computed using a Bayes B algorithm in the training set. 
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Figure 5.2. Flowchart of the genetic-swarm fuzzy expert system developed in the present study. 
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Figure 5.3. Schematic representation of a single rule, where S1, S2, .. . Sn refer to specific 

SNPs, Oi represents the output for a given observation, and Wi represents the 

corresponding weight. 
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Figure 5.4. Schematic representation of membership functions, as used in the present 

study, where P1, P2, . . ., Pn represent boundary points. 
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Figure 5.5.  Actual vs. predicted phenotypes for 1,010 test individuals using the Mamdani 

genetic-swarm fuzzy inference system, Sugeno genetic-swarm fuzzy inference system, 

random forest (RF), ordinary least squares (OLS), support vector machine (SVM), 

genomic BLUP with 100 SNPs (GBLUP-100), and genomic BLUP with 17,130 SNPs 

(GBLUP) to predict daughter yield deviation (DYD) for daughter pregnancy rate (DPR) of 

Holstein sires. 
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Short communication: Prediction of Retention Pay-off using 
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1. ABSTRACT 

Replacement decisions have a major impact on dairy farm profitability. Dynamic programming 

(DP) has been widely studied to find the optimal replacement policies in dairy cattle. However, 

DP models are computationally intensive and might not be practical for daily decision-making. 

Hence, the ability of applying machine learning on a pre-run DP model to provide fast and accurate 

predictions of non-linear and inter-correlated variables makes it an ideal methodology. Milk class 

(1 to 5), lactation number (1 to 9), month in milk (1 to 20), and month of pregnancy (0 to 9) were 

used to describe all cows in a herd in a DP model. Twenty-seven scenarios based on all 

combinations of 3 levels (base, 20% above, and 20% below) of milk production, milk price, and 

replacement cost were solved with the DP model, resulting in a dataset of 122,716 records, each 

with a calculated retention pay-off (RPO). Then, a machine learning model tree (MT) algorithm 

was used to mimic the evaluated RPO with DP. The correlation coefficient factor was used to 

observe the concordance of RPO evaluated by DP and RPO predicted by the model tree. The 

obtained correlation coefficient was 0.991, with a corresponding value of 0.11 relative absolute 

error. At least 100 instances were required per model constraint resulting in 204 total equations 

(models). When these models were used for binary classification of positive and negative RPO, 

error rates were 1% false negatives and 9% false positives. Applying this trained model from 

simulated data for prediction of RPO for 102 actual replacement records from UW-Madison dairy 

herd resulted in a 0.994 correlation with 0.10 relative absolute error rate. Overall results showed 

that MT has a potential to be used in conjunction with DP to assist farmers in their replacement 

decisions.   
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2. INTRODUCTION 

Assessing the value of cows in a herd is an important step for making replacement and other critical 

decisions such as individual cow breeding or treatment (Cabrera, 2012). Different methods have 

been developed and used to evaluate cow values in dairy herds, including dynamic stochastic 

simulation and optimization (Kalantari and Cabrera, 2012). Dynamic programming (DP), which 

is an optimization technique, has been widely studied over the past several decades (van Arendonk, 

1985; de Vries, 2004). Dynamic programming promises the optimal replacement policy, 

considering several biological and economic factors (Kalantari and Cabrera, 2012), by evaluating 

the value of keeping or replacing individual cows. These values are used for calculating retention 

pay-off values (RPO), which can be interpreted as the expected profit from keeping the cow 

compared with immediate replacement. This value could be used to rank animals and help farmers 

to make their final replacement decisions (De Vries, 2004). RPO of a cow is changing throughout 

the lactation and it follows a curve similar to a lactation curve. Magnitude of RPO is mainly 

determined by input parameters of the model including replacement cost, carcass price, and milk 

production level of the herd (Kalantari et al., 2010). A DP model can be described by three main 

characteristics first stage length, which is the time between 2 consecutive decisions; second state 

which is used to describe a cow in the model; and third transition probabilities, which are 

probabilities that are used to weight the values in the model. In this study, stage length was set at 

1-mo, and 3 state variables were used to describe the cow in the model. These variables included 

milk class (1 to 5), lactation number (l to 9), month in milk (1 to 20) and pregnancy status (0 (non-

pregnant) or 1 to 9). Probability of pregnancy, abortion, and involuntary culling were used as 

transition probabilities. The full details of the DP model and its formulation are explained in 

Kalantari and Cabrera (2012).  
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Three different levels of milk production, milk price, and replacement costs, for the base and 20% 

above and 20% below the base, were used to create an extensive data set to estimate different 

ranges of RPO. The total number of records in this data set was 122,716. These 3 variables were 

used, because different studies have shown that these variables have the greatest impact on 

replacement decisions (van Arendonk, 1985; Kalantari et al., 2010). Despite extensive research on 

DP models and their acknowledged value in finding optimal replacement decisions, this method 

has not been widely applied for decision-making on commercial farms. One reason could be 

attributed to DP’s complexity, which makes it difficult to both implement and conceptualize (Burt, 

1982). The other reason that could affect on-farm decision making, is that DP is not a user friendly 

model and needs many input parameters. However it seems that farmers have not enough trust to 

use black-boxed concepts such as “CowVal” provided by DairyComp305, a commercial dairy 

farm management software, to use it practically in their culling decisions. Thus, the ability of 

model tree (MT) algorithm to provide fast and accurate predictions of non-linear and inter-

correlated variables makes it an ideal methodology to be used together with a DP model in order 

to mimic the behavior of DP and give a clear interpretation of models and results. In addition, the 

MT model would abstract the complexity of DP model, and it reduces the number of input 

parameters that could easily be available from any on-farm database management software. Model 

trees are a type of decision trees used for numeric prediction. They are similar to decision trees 

because they use a divide and conquer approach to partition the multi-dimensional state space of 

the problem (Quinlan, 1992). The MT predicts the values for test instances by the linear model 

(LM) stored in each leaf based on the attributes of instances that reach that specific leaf (Figure 

6.1). The MT and alternating decision trees have been used in assessment of reproductive 

performance of dairy herds (Caraviello et al., 2006; Schefers et al., 2009).  
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In this study, the authors developed a user-friendly tool to predict RPO values based on MT, in 

which the DP remains as a computational core to calculate RPO whenever the input parameters 

change. Then, the MT can be re-trained based on the new RPO values and used as a terminal 

predictor of RPO on the farm. Therefore, a Java program was developed using Weka API (Hall et 

al., 2009), to implement the MT model. An executable version of the program is available online 

at the University of Wisconsin-Madison Dairy Management Website (DairyMGT.info) which can 

be used to evaluate animals on commercial farms.  

The aforementioned data set from the DP model was partitioned randomly, with two-thirds as a 

training set and one-third as a testing set for MT. Furthermore, in order to test the trained MT 

model in a practical situation, 102 records from voluntary culls were extracted from the Allenstein 

Dairy herd at the UW-Madison Integrated dairy Facility(Madison, Arlington, and Marshfield, WI), 

and these were used to perform an independent test for MT. 

Relative absolute error was used as the error criterion to assess performance of the MT because of 

2 main reasons. First, it measures absolute error, which is not affected by outliers. Second, it 

considers the relative magnitude of the error compared with the prediction.  

ݎ݋ݎݎܧ	݁ݐݑ݈݋ݏܾܣ	݁ݒ݅ݐ݈ܴܽ݁ ൌ෍
௜݌| െ	ܽ௜|
|ܽ௜ െ	 തܽ|

௡

௜ୀଵ

 

Where ݌௜ is predicted value, ܽ௜ is actual value and തܽ is the prediction by an arbitrary predictor, in 

this case the average of actual values (Witten and Frank, 2005).  

In developing a MT there is always two conflicting constraints, number of rules (number of LM 

stored in the leaves of the tree) and number of instances per LM which is the number of cases 

(records) that will reach an arbitrary LM. A trade off exist between these two constraints. 

Increasing the number of rules is equal to increase in accuracy of the model on training set but, 
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decrease in number of instances per LM and therefore loss of generality of the model and poor 

performance on the new unseen datasets. Hence finding an optimum point in between these two 

constraints are critical. Performance of MT in terms of number of rules, correlation coefficient, 

and relative absolute error with respect to the minimum numbers of instances per linear model as 

an indicating constraint are shown in Table 6.1. There was a noticeable trend in which increasing 

the minimum numbers of instances per linear model resulted in a decrease in the number of rules 

and correlation coefficient, but an increase in the error criterion. Predicted (MT) vs. actual (DP) 

RPO for corresponding 6 scenarios from Table 6.1 are graphically presented in Figure 6.2.  

Considering the results from Table 6.1, it seems that a minimum of 100 instances per LM would 

be a logical constraint because the number of rules dropped considerably to one-tenth in 

comparison with one instance per model (2,447 vs. 204); and, at the same time, the correlation 

coefficient and relative absolute error did not change substantially.  

Actual and predicted RPOs divided into 10 equal intervals called deciles.  Distributions of 

predicted vs. actual deciles of RPO are presented in Table 6.2. Numbers on the diagonal show 

the instances that MT predicted the RPO in the same decile as DP. Numbers above the diagonal 

show the cases of RPO that were cases of RPO that were underestimated by MT, and numbers 

below the diagonal are the cases that were overestimated. In general, the MT resulted in 76.5% 

correctly predicted RPOs, 12% overestimated RPOs and 11.5% underestimated RPOs.  

Since the sign of RPO is more important than its magnitude (Groenendaal et al, 2004), a binary 

evaluation of RPO prediction by MT was considered.  The confusion matrix in the case of binary 

classification of RPO is presented in Table 6.3. Classification of RPO into positive and negative 

cases showed an error rate of 1% false negative (FN) cases and 9% false positive (FP) cases, which 

indicates the advantage of the method in identifying negative cases. Here, FN are the terminal 
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mistakes in which cows that are predicted to have a negative RPO are culled from the herd 

erroneously, whereas FP are mistakes that can be corrected by identifying the animal as a cull in 

the next replacement decision round .  However the cost of FN and FP will depend on the 

magnitude of the RPO in which if a specific FN case has a positive RPO just a little above the zero 

the related cost would be zero and vice versa.  

The RPO prediction using MT is an efficient method for assessing the value of keeping or culling 

specific cows and helping farmers make economical culling decisions. A correlation coefficient of 

0.994 with 0.10 relative absolute error rate was obtained by applying the trained model for 

prediction to 102 actual voluntary culling records from the UW-Madison dairy herd, which 

indicates its accuracy and relevance in real-life replacement decisions. 
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Table 6.1. Performance of MT1 in prediction of RPO2 with different constraints (minimum 

numbers of instances per LM3). Suggested model constraint and its performance are in 

bold. 

Minimum Numbers 
of Instances per LM 

Number of Rules Correlation Coefficient Relative Absolute 
Error % 

1 2447 0.998 5.08 

100 204 0.991 10.93 

200 152 0.985 14.15 

400 89 0.976 17.91 

800 47 0.966 22.34 

1600 28 0.936 30.60 

1Model tree 
2Retention Pay-off 
3Linear model 
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Table 6.2. Predicted (MT1) vs. actual (DP2) deciles of RPO3 for 41,723 test cases. Numbers 

on the diagonal show the instances that MT predicted the RPO in the same decile as DP 

predicted. Above the diagonal show the cases of RPOs that were underestimated by MT, 

and below the diagonal are the cases that were overestimated by MT in compare with DP. 

  Actual Deciles 
   1  2  3  4  5  6  7  8  9  10 

P
re

di
ct

ed
 D

ec
il

es
 1  3,776  375  21  0  0  0  0  0  0  0 

2  385  3,257  491  34  5  0  0  0  0  0 
3  10  528  3,057  535  30  10  2  0  0  0 
4  1  12  584  2,893  650  31  1  0  0  0 
5  0  0  18  689  2,816  636  11  2  0  0 
6  0  0  1  20  653  2,891  576  30  1  0 
7  0  0  0  1  17  576  3,004  545  29  0 
8  0  0  0  0  1  23  550  3,101  487  10 
9  0  0  0  0  0  5  27  485  3,316  339 
10  0  0  0  0  0  0  1  9  339  3,826 

1Model tree 
2Dynamic programming 
3Retention Pay-off 
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Table 6.3. Confusion matrix for percentage of binary prediction of RPO1 for 41,723 test 

cases. 

Actual (Dynamic Programming) 

 Positive Negative 
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Positive 
0.91 0.09 

Negative 
0.01 0.99 

 
1Retention Pay-off 
 

 

 

 

 

 

 

 

 

 

 



122 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1: Schematic illustration of Model Tree algorithm with two explanatory variables 

(month in milk and month in pregnancy) and three linear models in leaves. For example if 

month in milk is <7.5 the value of retention pay-off (RPO) can be predicted by linear model 

1 (LM1), but if it is >=7.5 then month in pregnancy need to be considered too. If month in 

pregnancy is <5, linear model 2 (LM2) and if month in pregnancy is >=7.5 linear model 3 

(LM3) will be used. An example of LM2 can be RPO = + 0.1025 * month in milk + 2.5118 * 

month in pregnancy + 80.5674. 

 

Month in Milk

Month in Pregnancy

LM1 

LM2  LM3 

<7.5

<5 >=5

>=7.5
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Figure 6.2. Actual (predicted by dynamic programming; DP) vs. Predicted (predicted by 

machine learning model tree; MT) values of retention pay-off for 6 different scenarios with 

the test set showed in Table 6.1. 
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The objectives of first chapter of this study were to find the best performing models to predict the 

outcomes of insemination events using a variety of explanatory variables. The advantages of 

machine learning methods for predicting the outcome of insemination events with inter-correlated 

and often missing explanatory variables were demonstrated.  

The machine learning algorithms considered in this study (Naïve Bayes, Bayesian network, 

decision tree, bagging, and random forest) were effective in predicting pregnant versus non-

pregnant cows at the time of insemination. Among the algorithms considered in this research, RF 

was significantly better in terms of classification accuracy (72.3% and 73.6% for primiparous and 

multiparous cows, respectively) and area under the receiver operating characteristic (ROC) curve 

(75.6% and 73.6%, respectively).  

Evaluation of features by gain ratio showed that the incidence of ketosis, mastitis, retained 

placenta, and lameness for primiparous cows were among the most important explanatory 

variables, whereas the incidence of mastitis, displaced abomasum, and retained placenta were 

among the most important explanatory variables for multiparous cows. Overall, results of this 

study suggest that, although prediction of the insemination outcomes for individual lactating dairy 

cows is extremely difficult, information regarding health, reproductive history, production level, 

and other environmental features can be used to identify highly fertile subsets of cows.  

When semen is inexpensive and technician costs are modest, the common practice is to simply 

inseminate all eligible cows and ignore the costs associated with breeding lowly fertile cows with 

a history of health and reproductive problems. Therefore, using the best prediction model for the 

outcome of an insemination event along with cost-sensitive evaluation and lift chart analysis 

showed the economic differences between in various breeding scenarios. Decision support tools 

developed herein may allow dairy farmers to optimize their breeding programs by targeting 
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animals that are most likely to become pregnant. Such tools could be especially valuable in herds 

that utilize gender-enhanced semen or expensive semen from high merit sires. Lift chart analysis 

can be used to stratify the pool of eligible cows into those that are likely to conceive and those that 

should not be inseminated at a given point in time. When coupled with cost-sensitive evaluation 

of misclassified and correctly classified insemination events, the approach provides a potentially 

powerful tool optimizing the reproductive management strategy of a given farm under that farm’s 

economic conditions. Implementation of such a decision-making tool would likely require the 

assistance of a professional reproductive management consultant, but perhaps key features of this 

approach could be incorporated into existing dairy herd management software programs in the 

future.  The program developed here is ready for commercial use and is going to be available to 

farmers through a farm management software, which is under developement. 

The third part of this dissertation focused on genomic prediction of the merit of dairy sires for 

daughter pregnancy rate, proposing a novel hybrid fuzzy inference system. Although the results of 

this portion of the study were unfavorable, further tuning of the parameters and investigation of 

the reasons for poor model performance are needed to achieve acceptable prediction accuracy.  

The fourth part of this study was focused on developing a user-friendly tool to predict RPO values 

based on MT, in which dynamic programming remains as a computational core to calculate RPO 

whenever the input parameters change. Then, the MT can be re-trained based on the new RPO 

values and used as a terminal predictor of RPO on the farm. Therefore, a Java program was 

developed using Weka API (Hall et al., 2009), to implement the MT model. An executable version 

of the program is available online at the University of Wisconsin-Madison Dairy Management 

Website (DairyMGT.info), which can be used to evaluate animals on commercial farms.  
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In general, a limitation of this study was the shortage of high quality health records on farms for 

use in the predictive model of insemination outcomes. In addition, very few studies have 

investigated the cost and benefits associated with pregnancy, abortion, insemination and, the most 

challenging, the forgone pregnancy. These values are critical to make optimum decisions regarding 

breeding policies on commercial farms. Therefore, more research on these issues is needed in order 

to create a successful and realistic decision making tool. Moreover, because of fluctuating costs 

and profits associated with reproduction, having a fast and cost effective method to estimate these 

values is a necessary and worthy investment.  

Understanding the cause-effect relationship between explanatory variables associated with 

reproductive performance in general, and specifically the outcomes of insemination events, can 

enhance model performance for prediction of those traits. It is likely that the use of an influence 

diagram, Bayesian networks or structural equation models may be helpful in this regard.  

Lastly, considerable uncertainty exists regarding the state of nature with regard to additive, 

dominance, and epistatic effects of genes affecting complex traits such as female fertility. Methods 

of inference in such an uncertain space must be compatible with the problem. Fuzzy logic has 

proven itself in handling imprecision and nonlinearity in many industrial and medical applications. 

However, utilization of its potential in animal breeding and genetics has not been extensively 

explored, and as one of the first attempts to utilize fuzzy inference systems in genomic prediction, 

our results were not appealing. Additional work is needed to determine if such systems have a 

place in animal breeding and dairy farm management.  
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